

Towards a More Standardized Candle Using GRB Energetics & Spectra

Andrew S. Friedman¹ and Joshua S. Bloom^{1,2} (astro-ph/0408413)

1: Harvard-Smithsonian Center for Astrophysics, 2: UC Berkeley (On leave) afriedman@cfa.harvard.edu, jbloom@cfa.harvard.edu, www.cosmicbooms.net

Abstract

The use of γ -ray bursts (GRBs) energetics for cosmography has long been advanced as a means to probe to redshifts beyond those possible with Type Ia SNe, to the epoch of deceleration. However, though relatively immune to systematic effects of dust extinction, the prompt energy release in GRBs, even when corrected for jetting geometry, is far from being a standard candle. Recently, two groups (Dai et al. and Ghirlanda et al.) have claimed that by using the newly discovered relation between the apparent geometrycorrected energies (E_{γ}) and the peak in the rest frame prompt burst spectrum $(E_p = [1+z]E^{obs}p)$, GRBs now provide meaningful constraints on $\Omega_{M}, \Omega_{\Lambda}$, and the equation of state parameter w. In presenting the first selfconsistent formalism for correcting GRB energies with a thorough accounting for observational uncertainties, we demonstrate that the current sample of 19 GRBs is simply inadequate for cosmography when compared to results from Type Ia supernovae, large-scale structure, and the microwave background. The proper use of the relation clearly brings GRBs an impressive step closer toward a standardizable candle, but until the physical origin of the $E_{p}-E_{\gamma}$ relation is understood, additional corrections are discovered, and a larger and homogeneous determination of prompt-burst and afterglow observables exists (e.g., from Swift), bold claims about the utility of GRBs for cosmography will have to wait.

The E_p - E_γ relation

Although the E_{p} - E_{γ} relation is a highly significant correlation (Spearman ρ = 0.89, null probability = 2.3×10^{-7}), the correlation is not well fit by a **power law:** $E_P = \kappa (E_{\gamma}/E_o)^{\eta}$ (where $E_o = 10^{50.6}$ erg is chosen to minimize the covariance between η and κ) across a range of cosmologies, with a reduced χ^2_{ν} = 3.05 (17 dof) in the standard cosmology (Ω_M , Ω_A , h_{70}) = (0.3,0.7,1) and a minimum $\chi^2_{\nu} = 3.04$. The correlation, however, does provide a simple empirical correction to help standardize GRB energetics.

The (weak) cosmological dependence of the $E_{P}-E_{\gamma}$ relation. The best fit power-law relations for a representative set of cosmologies are shown above as a series of lines. Only the data for a standard cosmology of $(\Omega_{M}, \Omega_{\Lambda}, h_{70}) = (0.3, 0.7, 1)$ is shown for clarity with upper/lower limits indicated with arrows. Notable outliers are indicated with a large square surrounding the data points. The best fit values of the slope (η) and normalization (κ) are shown inset (standard cosmology = *). Note that the data for a standard cosmology with best fit $\eta = 0.70 \pm 0.07$, essentially brackets the fits across all cosmologies in the range: Ω_M , $\Omega_A \in [0,1]$.

Acknowledgements: A.S.F. acknowledges support from a National Science Foundation Graduate Research Fellowship and the Harvard Department of Astronomy. J.S.B. gratefully acknowledges support from the Harvard Society of Fellows and the Harvard-Smithsonian Center For Astrophysics. We thank R. Narayan, R. Kirshner, S. Gaudi and the anonymous referee for useful discussions and thoughtful comments

The GRB Hubble Diagram

A GRB standard candle is some function of prompt burst and afterglow observables and the luminosity distance (or distance modulus) which does not evolve with z and is roughly constant from burst to burst.

Are GRBs really useful for cosmology? The left figure shows the improvement of GRB Hubble diagrams for $(\Omega_M, \Omega_A, h_{70}) =$ (0.3,0.7,1) constructed using different standard candle assumptions: E_{iso} , E_{γ} , or $E_{\gamma,cor}$ = constant, where E_{iso} is the isotropic equivalent prompt y-ray energy release, $E_{\gamma} = E_{iso} f_b$ is the geometry-corrected energy where f_h is the beaming fraction inferred from the afterglow jet break time, and $E_{\gamma,cor} = E_{\gamma}(\kappa/E_p)^{1/\eta}$ is a further correction, making use the E_{p} - E_{γ} relation. From top to bottom there is a continual reduction in scatter (improved χ^2_{ν}) after applying empirical corrections to the energetics. However, more data and new empirical correlations, perhaps to be found in Swift data, will be necessary for GRB standard candles to be competitive with Type Ia SNe (χ^2 = 1.06, Riess et. al 2004) as cosmological distance indicators.

Cosmological Parameter Determination

Figure (left) shows χ^2 contours over (Ω_M, Ω_A) for the GRB Hubble diagram constructed using the corrected energy $E_{\gamma,cor}$ for the current sample of 19 bursts. Indicated on plot are: surface minima (asterisk), minima assuming flatness (diamond), and the location of the standard "WMAP" cosmology (blue circle). Top panel includes errors on correlation slope η and intercept κ . Although the fit seems to favor a $(\Omega_M, \Omega_A) = (0.2, 0.8)$ cosmology (assuming flatness), the fit is only marginally acceptable: minimum $\chi^2_{\nu}=2.55$ (17 dof). Bottom panel assumes η and κ are known a priori. Although $\Omega_M \sim 0.3$ appears to be favored, the fit is unacceptable: minimum χ^2_{ν} =3.32 (17 dof). With the current, small sample, and few low z bursts, Ω_A is essentially unconstrained in both cases. Although not shown here, the shape of the χ^2 surfaces and hence the best fit values and uncertainties 1.0 for Ω_M and Ω_A are highly sensitive to outliers in the E_p - E_γ relation.

Conclusion

Although cautious optimism is warranted with the addition of an order of magnitude more data and possible new empirical corrections to GRB energetics in the Swift era, GRBs are currently not useful for cosmography as compared, for example, to Type Ia supernovae.

References

Amati et al. 2002, A&A, 390, 81 Bloom et al.2003, ApJ, 594, 674 Dai et al. 2004, ApJ, 612, L101 Frail et al. 2001, ApJ, 562, L55 Friedman, A.S. & Bloom, J.S., ApJ sumbitted (astro-ph/0408413)

Ghirlanda et al. 2004a, ApJ, accepted, (astro-ph/0405602) Ghirlanda et al. 2004b, ApJ, 613, L13 Riess et al. 2004, ApJ, 607, 665 Schaefer, B.E. 2003, ApJ, 588, 387 Takahashi et al. 2003, (astro-ph/0305260)