

COSMIC BELL: TESTING QUANTUM MECHANICS AND BELL'S INEQUALITY WITH ASTROPHYSICAL OBSERVATIONS

Dr. Andrew Friedman

NSF Research Associate, Visiting Research Scientist MIT Center for Theoretical Physics

http://web.mit.edu/asf/www/ asf@mit.edu

Massachusetts Institute of Technology

Kavli Institute for Cosmological Physics at The University of Chicago

07/01/15

COSMIC BELL TEAM

Dr. Jason **Gallicchio**³

Dr. Andrew Friedman ^{1,2}

Prof. David Kaiser ^{1,2}

Prof. Alan Guth ¹

Postdocs, Grad Students, Undergrads

Dr. Thomas Scheidl ⁵. Dr. Johannes Kofler⁶, Johannes Handsteiner ⁵, Marissa Giustina ⁵, Isabella Sanders ¹, Anthony Mark¹

Institute of Technology

for Cosmological Physics at The University of Chicago

1:MIT Physics/CTP, 2:MIT STS, 3:U. Chicago KICP / Harvey Mudd, 4: UCSD, 5: Vienna IQOQI, 6[.] Max Planck

Prof. Brian Keating ⁴ 07/01/15

Prof. Anton Zeilinger ⁵

COSMIC BELL PUBLICATIONS

"<u>Testing Bell's Inequality with Cosmic Photons:</u> <u>Closing the Setting-Independence Loophole</u>"

Gallicchio, Friedman, & Kaiser 2014 = GFK14 *Phys. Rev. Lett., Vol. 112, 11, 110405,* arXiv:1310.3288

"The Shared Causal Pasts and Futures of Cosmological Events" Friedman, Kaiser & Gallicchio 2013 = F13a Phys. Rev. D., Vol. 88, 4, 044038, <u>arXiv:1305.3943</u>

> "Can the Cosmos Test Quantum Entanglement?" Friedman 2014d Astronomy, Vol. 42, 10, October 2014, pg. 28-33, [PDF]

"The Universe Made Me Do It? Testing "Free Will" With Distant Quasars" Friedman 2014a NOVA, The Nature of Reality. March 9 2014, [PDF]

07/01/15

2. Cosmic Bell Proposal

Gallicchio, Friedman, & Kaiser 2014 (GFK14) Phys. Rev. Lett., Vol. 112, 11, 110405 (arXiv:1310.3288)

3. Cosmological Past Lightcone Overlap

Friedman, Kaiser, & Gallicchio 2013 (F13a) *Phys. Rev. D.* Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Pilot, Full, & Future Cosmic Bell Tests

Friedman+2015d in prep.

5. <u>Testing Alternative Models</u>

Friedman+2015e in prep.

07/01/15

If yes, QM incomplete → *Hidden variables.*

07/01/15

BELL'S THEOREM ASSUMPTIONS

1. Realism

External reality exists and has definite properties, whether or not they are observed.

2. Locality

07/01/15

If distant systems no longer interact, nothing done to system 1 can affect system 2.

3. Fair Sampling

Probability of detector click uncorrelated with events in past light cone of experiment.

4. Freedom (Setting Independence / Free Will)

Detector settings choices independent of any events in their shared past light cones. Observers can choose settings "freely". Choices only correlated with future LCs.

1,2,3,4 → Bell's Inequality

CHSH form: S = $|\langle AB \rangle + \langle AB' \rangle + \langle A'B \rangle - \langle A'B' \rangle | \le 2$ QM Prediction (Singlet State): S_{max} = $2\sqrt{2}$

> Einstein, Podolsky, & Rosen (EPR) 1935; Bell 1964; Clauser, Horne, Shimony, & Holt (CHSH) 1969 Center for Astrophysics and Space Sciences, UC San Diego

BELL TEST RESULTS

1. Realism 2. Locality 3. Fair Sampling 4. Freedom Bell/CHSH Inequality: $S = | \langle AB \rangle + \langle AB' \rangle + \langle A'B \rangle - \langle A'B' \rangle | \leq 2$

Real Experiments:

 $S_{max} > 2 \rightarrow At$ least one of 1,2,3,4 are false!

Usual Story:

Experiments falsify "local realism" (2 or 1 or both). Local HV theories ruled out. QM non-local, and/or non-realist.

Another Story:

QM incomplete. Local realistic HVs describe missing degrees of freedom (e.g. EPR 1935)

Loopholes: Relax fair sampling or freedom! (3 and/or 4 false)

Einstein, Podolsky, & Rosen (EPR) 1935; Bell 1964; Clauser, Horne, Shimony, & Holt (CHSH) 1969

07/01/15

BELL'S THEOREM LOOPHOLES

Loopholes: Local Realism tenable despite S_{max} > 2

Why Does it Matter?

Quantum foundations!

Security of quantum cryptography

A. Locality Loophole

Hidden communication between parties

CLOSED for photons: Aspect+1982, Weihs+1998

Spacelike separated measurements

Spacelike separated

settings (QRNGs)

Closing Method?

High efficiency

detectors

B. Fair Sampling / Detection Efficiency Loophole

Measured sub-sample not representative

OSED for atoms: **Rowe+2001**, superconducting qubits:

Ansmann+2009, photons: Giustina+2013, Christensen+2013

C. Freedom of Choice / Setting Independence / Free Will Loophole

Settings correlated with local hidden variables

CLOSED partially? for photons: Scheidl+2010

Center for Astrophysics and Space Sciences, UC San Diego

07/01/15

RELAXING FREEDOM

4. Freedom / Setting Independence

Detector settings choices independent of any events in their shared past light cones. Observers can choose settings "freely". Choices only correlated with future LCs.

- Can events in past LC of source & detector \rightarrow correlated settings? Trivially YES: deterministic local HV theory (e.g. **Brans 1986**)
- Deterministic, LHV model can mimic QM with ~ 1/15 bits of mutual information between settings choices & HVs (Hall 2011)
- Freedom = most fragile loophole quantitatively.
 Communication models relaxing locality need ≥ 1 bit
 (e.g. Toner & Bacon 2001, Hall 2010, 2011)

Quantitative models! Relaxing Freedom does not imply "superdeterministic cosmic conspiracy"

07/01/15

2. Cosmic Bell Proposal

Gallicchio, Friedman, & Kaiser 2014 (GFK14) Phys. Rev. Lett., Vol. 112, 11, 110405 (arXiv:1310.3288)

3. Cosmological Past Lightcone Overlap

Friedman, Kaiser, & Gallicchio 2013 (F13a) *Phys. Rev. D.* Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Pilot, Full, & Future Cosmic Bell Tests

Friedman+2015d in prep.

5. <u>Testing Alternative Models</u>

Friedman+2015e in prep.

07/01/15

2. Cosmic Bell Proposal

Gallicchio, Friedman, & Kaiser 2014 (GFK14) Phys. Rev. Lett., Vol. 112, 11, 110405 (arXiv:1310.3288)

3. Cosmological Past Lightcone Overlap

Friedman, Kaiser, & Gallicchio 2013 (F13a) *Phys. Rev. D.* Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Pilot, Full, & Future Cosmic Bell Tests

Friedman+2015d in prep.

5. <u>Testing Alternative Models</u>

Friedman+2015e in prep.

07/01/15

DO TWO COSMOLOGICAL EVENTS HAVE A SHARED PAST?

2. Cosmic Bell Proposal

Gallicchio, Friedman, & Kaiser 2014 (GFK14) Phys. Rev. Lett., Vol. 112, 11, 110405 (arXiv:1310.3288)

3. Cosmological Past Lightcone Overlap

Friedman, Kaiser, & Gallicchio 2013 (F13a) *Phys. Rev. D.* Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Pilot, Full, & Future Cosmic Bell Tests

Friedman+2015d in prep.

5. <u>Testing Alternative Models</u>

Friedman+2015e in prep.

07/01/15

EXAMPLE QUASAR PAIRS pair 3 - YES shared past with each other & Earth pair 2 - NO shared past with each other, but A₂ has shared past with Earth pair 1 - NO shared past with each other or Earth

Fig. 5, Table I (F13a)

Pair	Separation Angle α_i [deg]	Event Labels	$\begin{array}{c} \textbf{Redshifts} \\ z_{A_i}, z_{B_i} \end{array}$	Object Names	\mathbf{RA} $[deg]$	${f DEC} \ [deg]$	\mathbf{R} [mag]	B [mag]
1	116.003	A_1	6.109	SDSS_J031405.36-010403.8	48.5221	-1.0675	16.9	20.1
		B_1	6.606	$SDSS_J171919.54 + 602241.0$	259.8313	60.3781	18.6	16.9
2	130.355	A_2	3.167	KX_257	24.1229	15.0481	16.7	17.8
		B_2	6.086	SDSS_J110521.50+174634.1	166.3396	17.7761	16.4	25.1
3	154.357	A_3	1.950	Q_0023-4124	6.5496	-41.1381	14.2	15.4
		B_3	2.203	$HS_{-}1103+6416$	166.5446	64.0025	14.7	15.4

LOOPHOLE FREE COSMIC BELL?

Freedom of Choice / Setting Independence

Choose settings with cosmic sources.

Locality

Choose settings with cosmic sources while EPR pair is in flight.

Fair Sampling / Detection Efficiency

Use existing detector technology: efficiency & time resolution

With feasible experimental parameters, can close <u>first two loopholes</u> simultaneously! (GFK13)

~1-meter	Telescope mirror diameters		
~100km	Baseline between telescopes		
$\sim 2 \times 10^4$ photons s ⁻¹ m ⁻²	Optical quasar flux at z~4.13, separated by 130°		
~50-98%	Cosmic photon detector efficiency (APD / TES)		

07/01/15

ZEILINGER GROUP EXPERIMENTS

ESA - Optical Ground Station (OGS) 1-m receiver telescope, Laser guide to La Palma

Scheidl+2010, PNAS, 107, 46, p. 19708-19713

07/01/15

GHZ WITH CMB?

3+ particles, Bell's theorem without inequalities QM, Local realism give opposite answers to yes/no questions

Greenberger, Horne, Zeilinger 1989; Greenberger+1990; Mermin 1990

Balloon based test in Antarctica?

Easy! Pick 3 CMB patches, each separated by 2.3°

Hard! Local noise dominates from ground (GFK14)

Noise loophole limits better than 2-particle Bell test (Hall 2011)

Friedman+2015d in prep.

07/01/15

2. Cosmic Bell Proposal

Gallicchio, Friedman, & Kaiser 2014 (GFK14) Phys. Rev. Lett., Vol. 112, 11, 110405 (arXiv:1310.3288)

3. Cosmological Past Lightcone Overlap

Friedman, Kaiser, & Gallicchio 2013 (F13a) *Phys. Rev. D.* Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Pilot, Full, & Future Cosmic Bell Tests

Friedman+2015d in prep.

5. <u>Testing Alternative Models</u>

Friedman 2015e in prep

07/01/15

POSSIBLE OUTCOMES

Expected

Bell inequalities always violated. Rule out ("implausify") local HV theories as much as possible, modulo inflation.

Unexpected

Degree of Bell violation depends on extent of shared causal past of cosmic sources, lookback time to past LC intersection.

<u>Strangest</u>

Bell inequality not violated for very distant cosmic sources.

Perhaps freedom / setting independence assumption is false! Maybe universe actually exploits free will loophole. Implications for inflation? Quantum gravity?

07/01/15

CAUSAL OVERLAP REGION

What if Bell test correlations depended on extent of causal overlap region? Causal origin for entanglement exploiting free will loophole?

FUTURE WORK

Optimal candidate stars, quasars, observing plan. Quasars vs CMB? EPR2 vs GHZ3, GHZ4. Ground, baloon, space-based tests. Quantifying alternative models

GFK14, Friedman+2015d *in prep*, Friedman+2015e *in prep*.

It's Loopholes all the way down...

"Noise Loophole" Need triggers by genuine cosmic photons, not local "noise" photons. Need sufficient signal-to-noise from cosmic sources.

"Inflation Loophole" Shared past during inflation

<u>REFERENCES</u>

Ade+2013, A & A sub., (arXiv:1303.5076) Aspect+1982, Phys. Rev. Lett., Vol. 49, 25, December 20, p. 1804-1807 Barret & Gisin 2011, Phys. Rev. Lett., vol. 106, 10, id. 100406 Bell 1964, Physics Vol. 1, No. 3, p. 195-200, Physics Publishing Co. Bell+1989, Speakable & Unspeakable in Quantum Mechanics, American Journal of Phys., Vol. 57, Issue 6, p. 567 Clauser, Horne, Shimony, & Holt 1969, PRL 23, 880 Clauser & Shimony 1978, Rep. Prog. Phys. 41, 1881 Christensen+2013, Phys. Rev. Lett., 111, 120406 Einstein, Podolsky, & Rosen 1935, Phys. Rev., Vol. 47, 10, p. 777-780 Freedman & Clauser 1972, Phys. Rev. Lett., vol. 28, 14, p. 938-941 Friedman, Kaiser, & Gallicchio 2013a, Phys. Rev. D, Vol. 88, Iss. 4, id. 044038, 18 p. (arXiv:1305.3943) Friedman+2015d, ApJ in prep. Gallicchio, Friedman, & Kaiser 2013=GFK13, Phys. Rev. Lett., Vol. 112, Issue 11, id. 110405, (arXiv:1310.3288) Giustina+2013, Nature, Vol. 497, 7448, p. 227-230 Greenberger, Horne, & Zeilinger 1989, "Going Beyond Bell's Theorem", in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, Ed. M. Kafatos, Kluwer Academic, Dordrecht, The Netherlands, p. 73-76 Greenberger+1990, American Journal of Physics, Volume 58, Issue 12, pp. 1131-1143 Guth 1981, Phys. Rev. D, Vol. 23, 2, p. 347-356 Guth & Kaiser 2005, Science, Vol. 307, 5711, p. 884-890 Hall 2010, Phys. Rev. Lett., vol. 105, 25, id. 250404 Hall 2011, Phys. Rev. A, vol. 84, 2, id. 022102 Maudlin 1994, "Quantum Non-Locality and Relativity", Wiley-Blackwell; 1st edition Mermin 1990, American Journal of Physics, Volume 58, Issue 8, pp. 731-734 t'Hooft 2007, (arXiv:quant-ph/0701097) Scheidl+2010, PNAS, 107, 46, p. 19708-19713 Weihs+1998, Phys. Rev. Lett., Vol. 81, 23, Dec 7, p. 5039-5043 Zeilinger 2010, "Dance of the Photons", Farrar, Straus & Giroux; 1st Ed.

07/01/15