

TESTING QUANTUM MECHANICS AND BELLL'S INEQUALITY WITH OBSERVATIONS OF CAUSALLY DISCONNECTED COSMOLOGICAL EVENTS

Andrew Friedman

NSF STS Postdoctoral Fellow MIT Center for Theoretical Physics

http://web.mit.edu/asf/www/

asf@mit.edu

Dr. Jason Gallicchio,

U. Chicago KICP,

South Pole Telescope

Prof. David Kaiser,
MIT STS, Physics, CTP

Prof. Alan Guth,
MIT Physics, CTP

+MIT UROP Students: Isabella Sanders, Anthony Mark

"<u>Testing Bell's Inequality with Cosmic Photons:</u> <u>Closing the Settings-Independence Loophole</u>"

Gallicchio, Friedman, & Kaiser 2013 = GFK13

Phys. Rev. Lett. submitted (arXiv:1310.3288)

"The Shared Causal Pasts and Futures of Cosmological Events"
Friedman, Kaiser & Gallicchio 2013 = F13a
Phys. Rev. D. Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

OUTLINE

- 1. The Big Picture: Bell's Theorem
- 2. <u>Cosmic Bell Gedankenexperiment</u>

Gallicchio, Friedman, & Kaiser 2013 (GFK13)

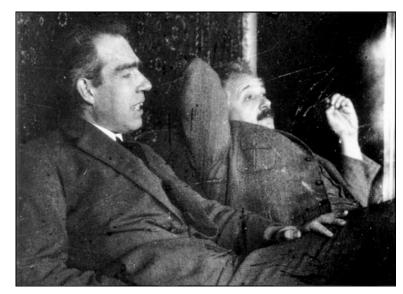
Phys. Rev. Lett. submitted (arXiv:1310.3288)

3. Shared Causal Pasts of Cosmic Events

Friedman, Kaiser, & Gallicchio 2013 (F13a)

Phys. Rev. D. Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Causally Disconnected Quasars

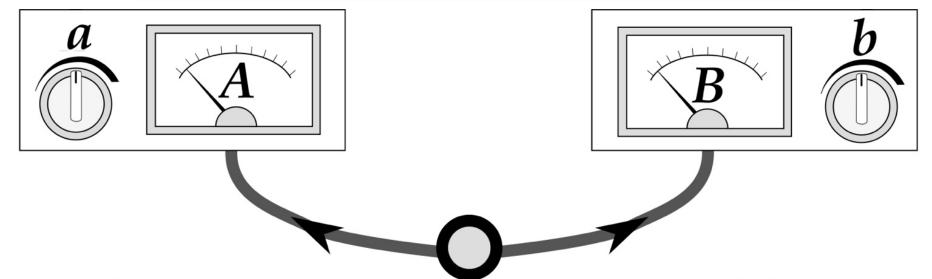

Friedman+2014b in prep. (F14b)

5. Actually Doing the Experiment?

QM AND HIDDEN VARIABLES

- 1927 Copenhagen interpretation of QM (Bohr, Heisenberg)
- 1935 Einstein-Podolsky-Rosen (EPR) paradox paper
- 1952 De Broglie-Bohm nonlocal hidden variable theory (Bohmian Mechanics)
- **1964** Bell's Theorem on local hidden variables
- **1972** First experimental Bell test (Freedman & Clauser 1972)

History Credit: Johannes Kofler http://www.qi.ubc.ca/Talks/TalkKofler.pdf



Bohr and Einstein, 1925

Bohr and Einstein, 1925 (in parallel universe where they agree)

EPR OR BELL EXPERIMENTS

Source of Entangled Particles

a, b = Settings

A, B = Outcomes

Big question: *Is the world local or non-local? If local, QM incomplete → Hidden variables.*

BELL'S THEOREM ASSUMPTIONS

1. Realism

External reality exists and has definite properties, whether or not they are observed.

2. Locality

If distant systems no longer interact, nothing done to system 1 can affect system 2.

3. Settings Independence / Freedom of Choice

Detector settings choices independent and random.

Observers can choose experimental settings freely.

$1,2,3 \rightarrow Bell's Inequality$

CHSH form: $S = E(a_1,b_1) + E(a_1,b_2) + E(a_2,b_1) - E(a_2,b_2) \le 2$

QM Predictions + Actual Bell Experiments: $2 < S_{max} \le 2\sqrt{2}$

 $S_{max} > 2 \rightarrow At$ least one of 1,2,3 are false!

LOCAL HIDDEN VARIABLES

THEOREM

 $S_{max} > 2 \rightarrow At$ least one of 1,2,3 are false!

- 1. Realism
- 2. Locality
- 3. Settings Independence

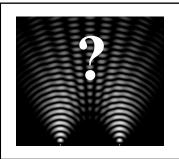
Experimental Fact $(S_{max} > 2)$

All previous EPR experiments violate Bell's inequality

The Usual Story:

QM incompatible with "local realism" (2 or 1 or both)

Local "hidden variable" (HV) theories ruled out by experiment ...


... Equally Logically Consistent Story:

QM incomplete. Local realism OK. Local HVs describe missing degrees of freedom (e.g. EPR 1935)

Possible loophole: Just relax settings independence! (3 false)

BELL'S THEOREM LOOPHOLES

Loopholes: Local Realism still tenable despite $S_{max} > 2$

Why Does it Matter?

Quantum foundations!

Security of quantum cryptography

A. Locality Loophole

Hidden communication between parties

CLOSED

for photons: Aspect+1982, Weihs+1998

Closing Method?

Spacelike separated measurements

B. Fair sampling / Detection Efficiency Loophole

Measured sub-sample not representative

CLOSED

for atoms: **Rowe+2001**, superconducting qubits:

Ansmann+2009, photons: Giustina+2013, Christensen+2013

High efficiency detectors

C. Settings Independence / Freedom of Choice Loophole

Settings correlated with local hidden variables

partially? for photons: Scheidl+2010

Spacelike separated settings (QRNGs)

RELAXING SETTINGS INDEPENDENCE

3. Settings Independence / Freedom of Choice

Detector settings choices independent and random. Observers can choose experimental settings freely.

- Can events in past LC of source & detector → correlated settings?
- Trivially YES: deterministic local HV theory (e.g. **Brans 1986**)
- Local deterministic, model can mimic QM with ≤ 1/22 bits of mutual information between settings choices (Hall 2011)
- Settings independence = most fragile loophole quantitatively.
 Communication or indeterministic models need ≥ 1 bit

(e.g. Toner & Bacon 2001, Hall 2010, 2011)

Implausible "cosmic conspiracy" or quantitative, testable model?

OUTLINE

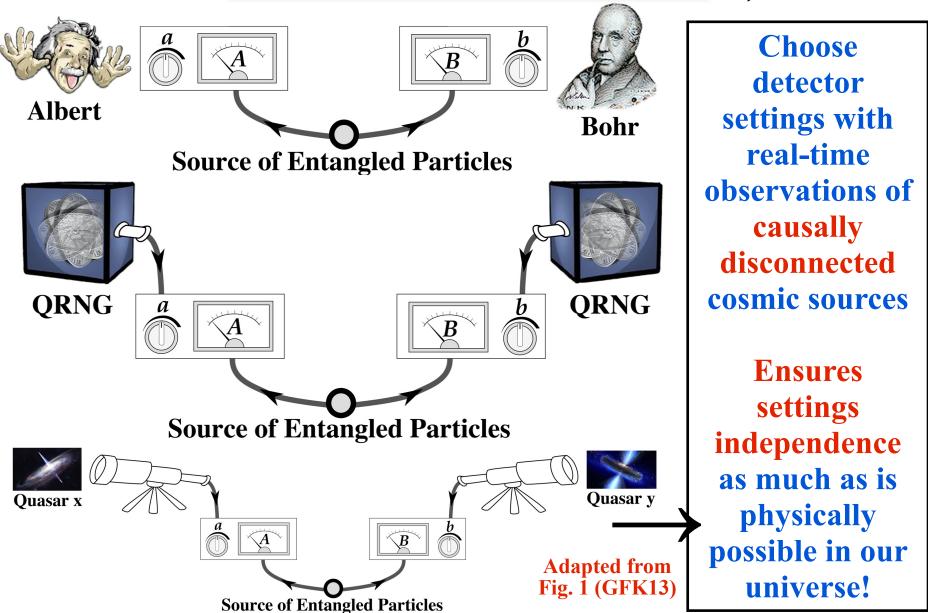
- 1. The Big Picture: Bell's Theorem
- 2. <u>Cosmic Bell Gedankenexperiment</u>

Gallicchio, Friedman, & Kaiser 2013 (GFK13)

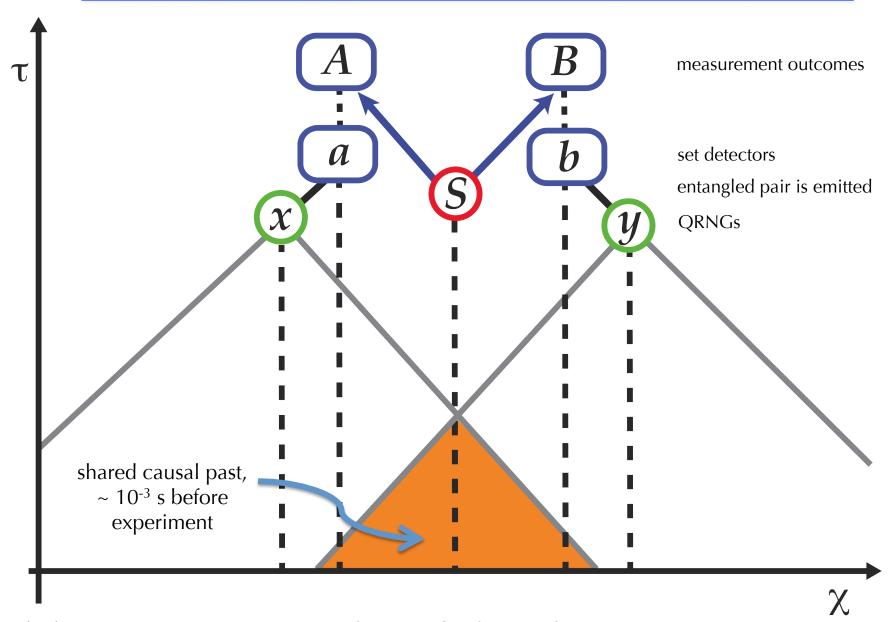
Phys. Rev. Lett. submitted (arXiv:1310.3288)

3. Shared Causal Pasts of Cosmic Events

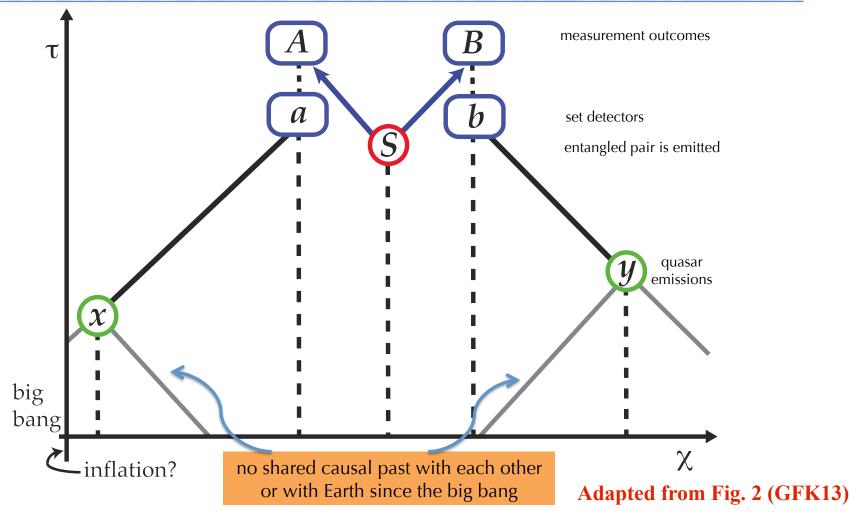
Friedman, Kaiser, & Gallicchio 2013 (F13a)


Phys. Rev. D. Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Causally Disconnected Quasars


Friedman+2014 in prep. (F14b)

5. Actually Doing the Experiment?


CHOOSING SETTINGS a, b

BELL TEST CONFORMAL DIAGRAM

COSMIC BELL CONFORMAL DIAGRAM

x, y need z > 3.65 (at 180°) for no shared causal past with each other, source, detectors since end of inflation 13.8 Gyr ago

COSMIC BELL ADVANTAGES

- Others had same basic idea: e.g. Maudlin 1994, Scheidl+2010, Zeilinger 2010 We're the first to look at real cosmological sources, feasible experimental setups
- No experiment has closed settings independence with **cosmic sources**.
- Decisive novel part of future "Loophole free" Bell test Simultaneously Close Locality, Detection, & Settings Independence Space-like separate ALL events of interest, use high efficiency detectors.
- No single experiment has closed all 3 loopholes simultaneously **photons**: separate experiments closed locality & detection loopholes. Settings independence only closed with strong assumptions (Scheidl+2010)
- QRNGs (or any Earthbound devices) have shared pasts milliseconds before experiment. Not causally independent!

 Our setup: ~13-20 orders of magnitude better than previous tests
- Even with **local stars**, can push conspiracy before recorded history!
- Rule out local HV cosmic conspiracies as much as is physically possible in our universe (except "superdeterminism", e.g. t'Hooft 2007)

OUTLINE

- 1. The Big Picture: Bell's Theorem
- 2. <u>Cosmic Bell Gedankenexperiment</u>

Gallicchio, Friedman, & Kaiser 2013 (GFK13)

Phys. Rev. Lett. submitted (arXiv:1310.3288)

3. Shared Causal Pasts of Cosmic Events

Friedman, Kaiser, & Gallicchio 2013 (F13a)

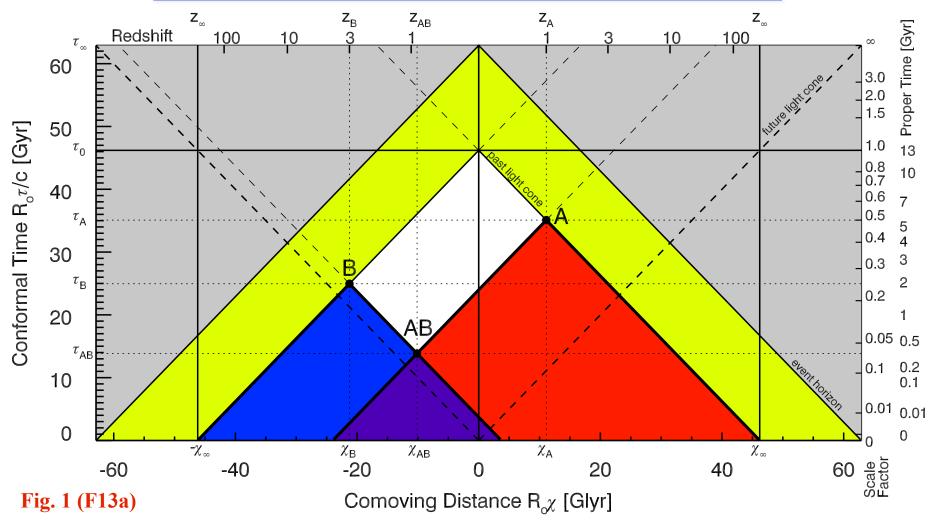
Phys. Rev. D. Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Causally Disconnected Quasars

Friedman+2014 in prep. (F14b)

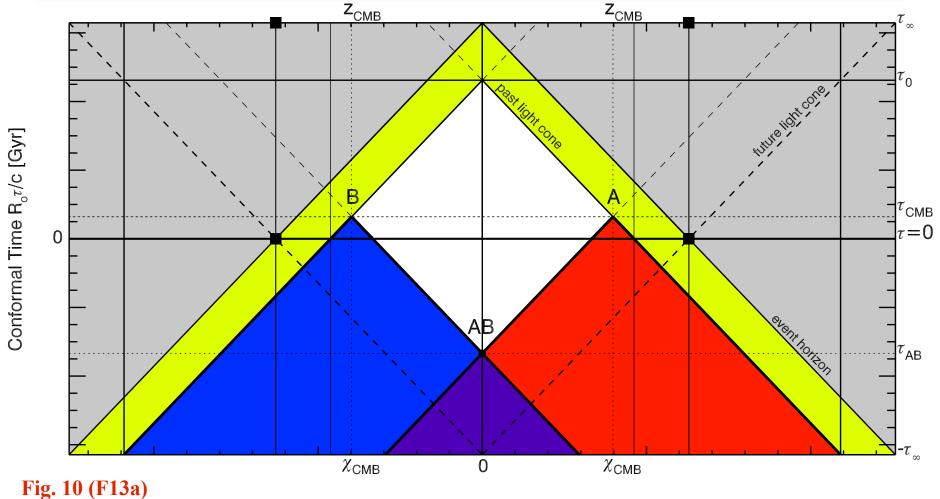
5. Actually Doing the Experiment?

COSMOLOGY QUESTION


Cosmological event pairs with arbitrary redshifts, angular separations

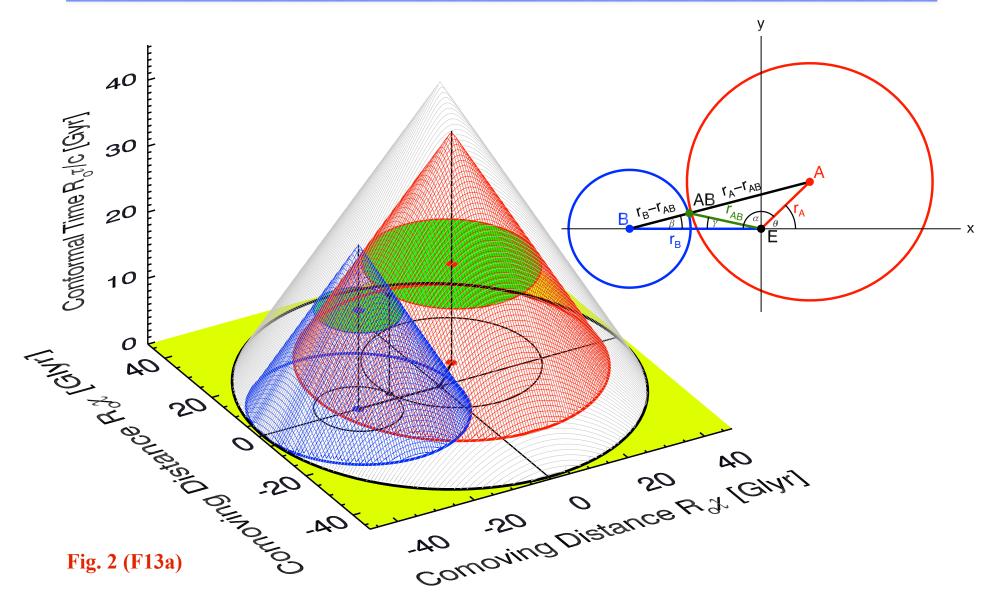
- 1. Do they have a shared causal past since the hot big bang (end of inflation)?
- 2. Could any other events (post inflation) have jointly influenced both. Are the events indep.?
- z > 3.65 pairs (180 deg): no shared causal past w/ each other or Earth since end of inflation (FLAT univ.)

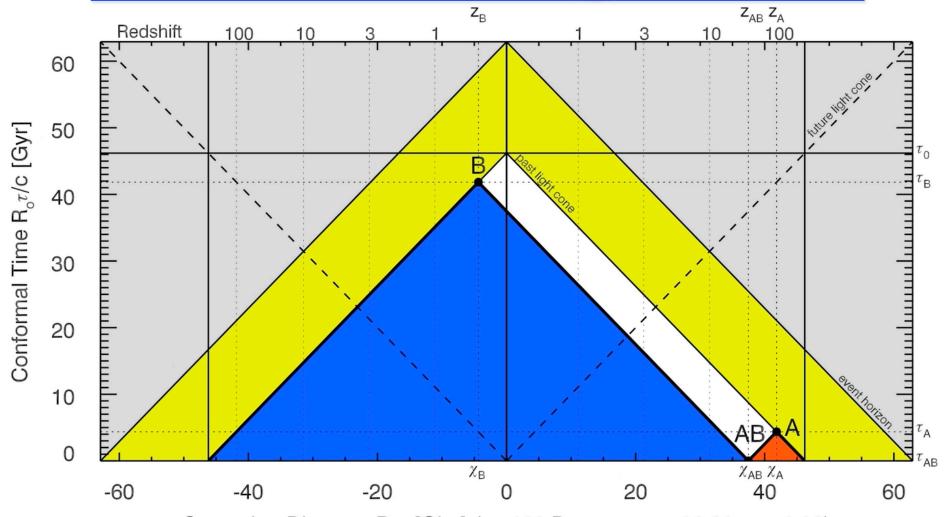
Constraints complex for angles < 180 deg


General results for curved space (F13a)

DO TWO COSMOLOGICAL EVENTS HAVE A SHARED PAST?

Since the hot big bang or the end of inflation

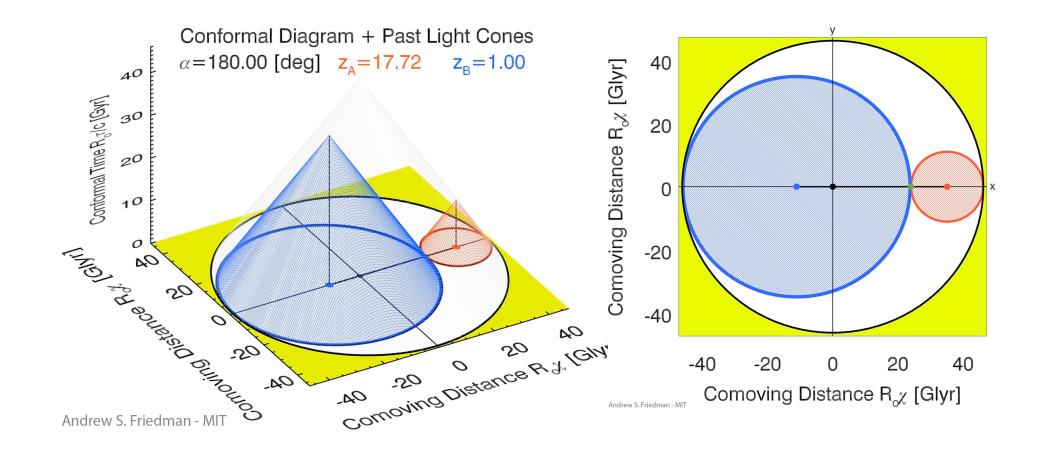

INFLATION & THE HORIZON PROBLEM


Comoving Distance R_X [Glyr]

If enough inflation happened to solve the horizon problem, ALL events in our past LC have shared pasts

PAST LIGHT CONE INTERSECTION

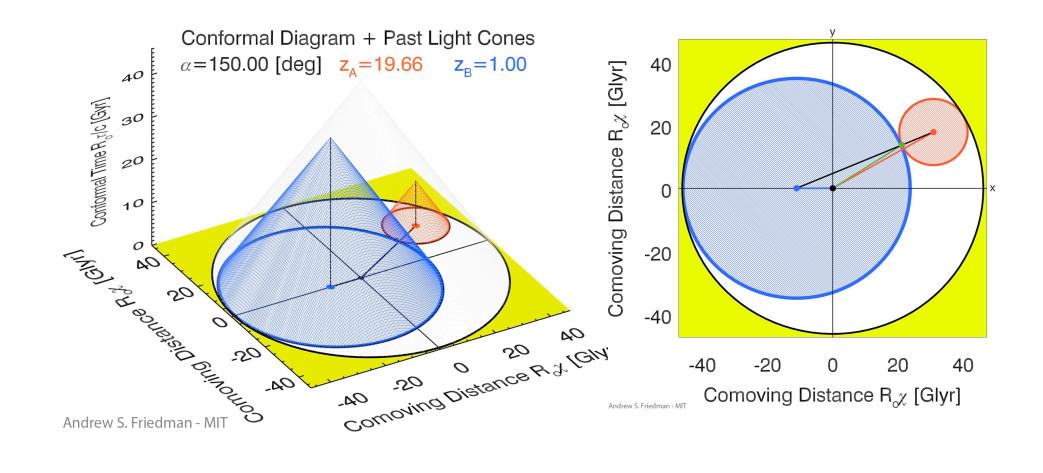
LC INTERSECTION @BI



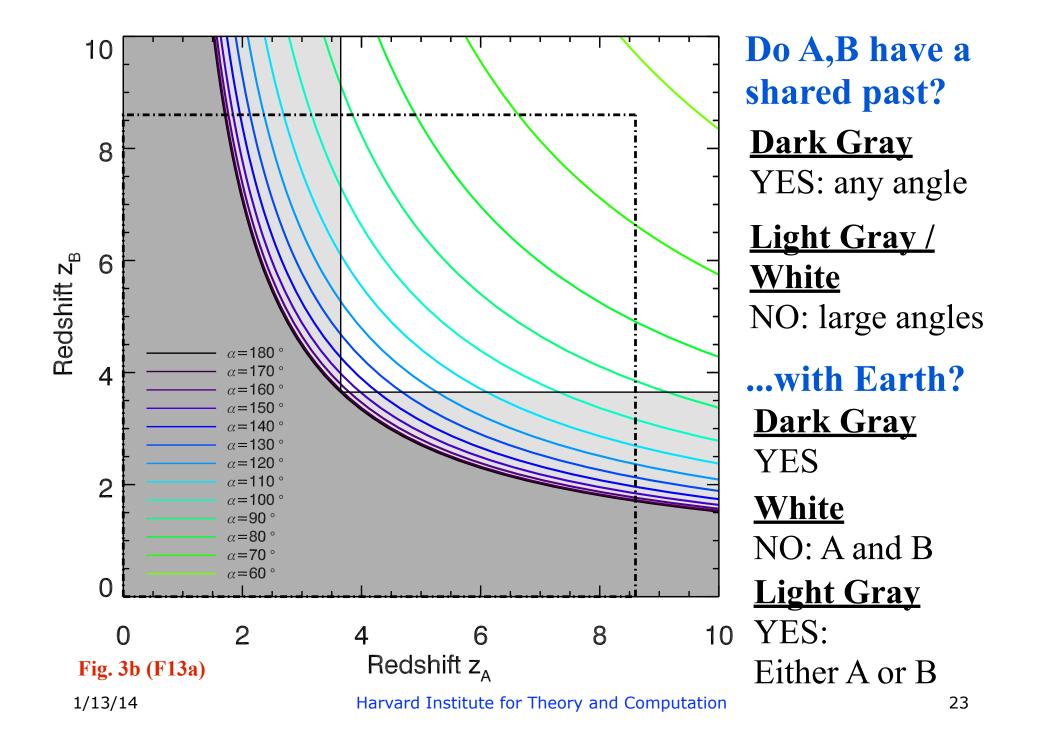
Comoving Distance $R_{\alpha}\chi$ [Glyr] (α =180 Degrees, z_{A} =98.90, z_{B} =0.33) Andrew S. Friedman - MIT

Animation 1 (F13a supplementary material) http://prd.aps.org/supplemental/PRD/v88/i4/e044038 http://web.mit.edu/asf/www/causal past.shtml

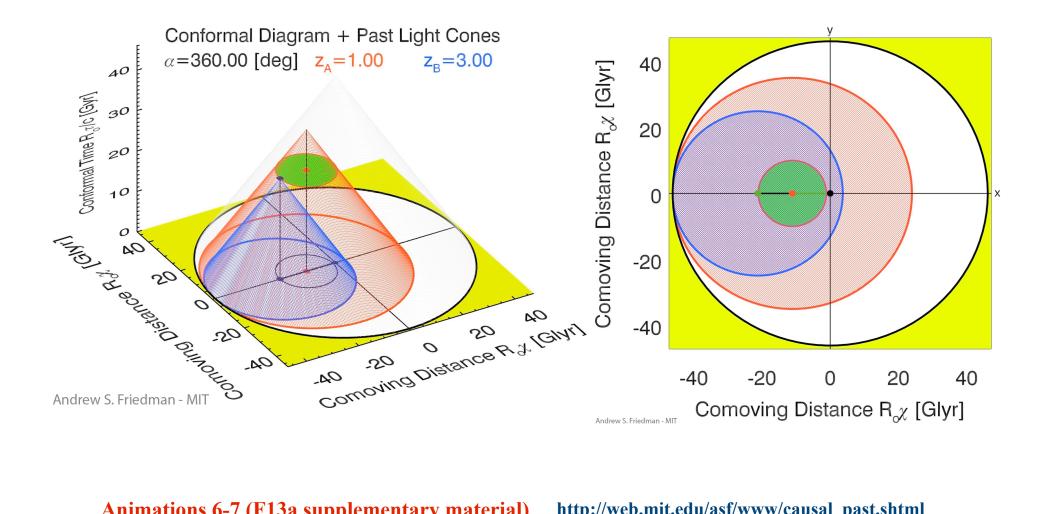
http://web.mit.edu/asf/www/01 conformal movie.shtml


LC INTERSECTION @BIG BANG

Animations 2-3 (F13a supplementary material) http://prd.aps.org/supplemental/PRD/v88/i4/e044038

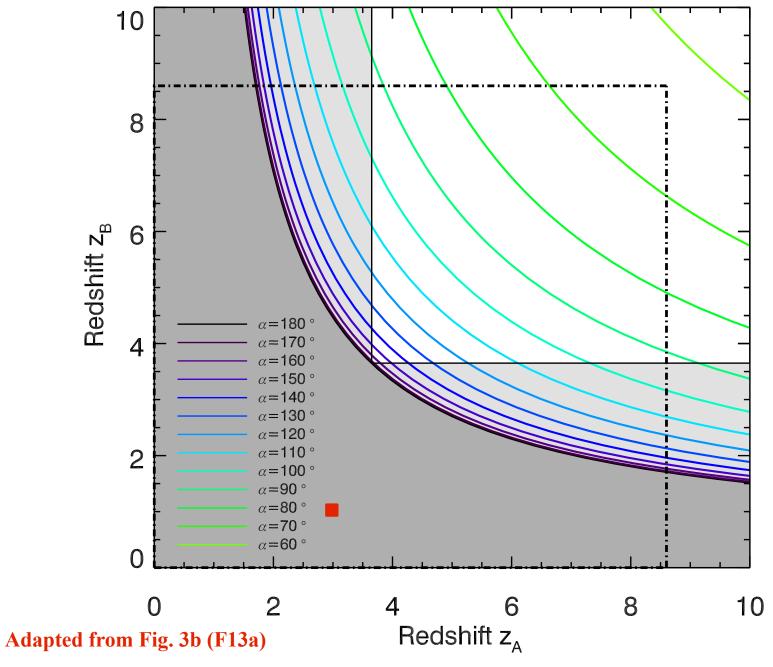

http://web.mit.edu/asf/www/causal_past.shtml http://web.mit.edu/asf/www/02_BB_180.shtml

LC INTERSECTION @BIG BANG

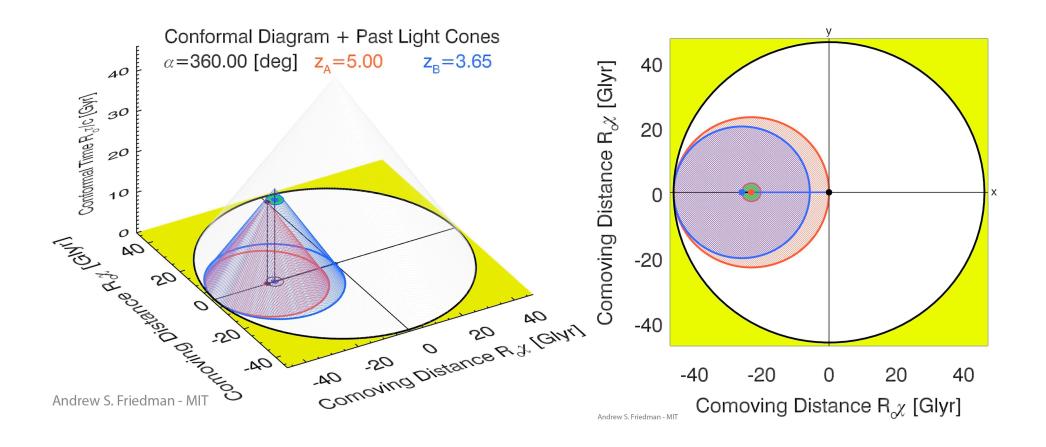


Animations 4-5 (F13a supplementary material) http://prd.aps.org/supplemental/PRD/v88/i4/e044038

http://web.mit.edu/asf/www/causal_past.shtml http://web.mit.edu/asf/www/03 BB 150.shtml

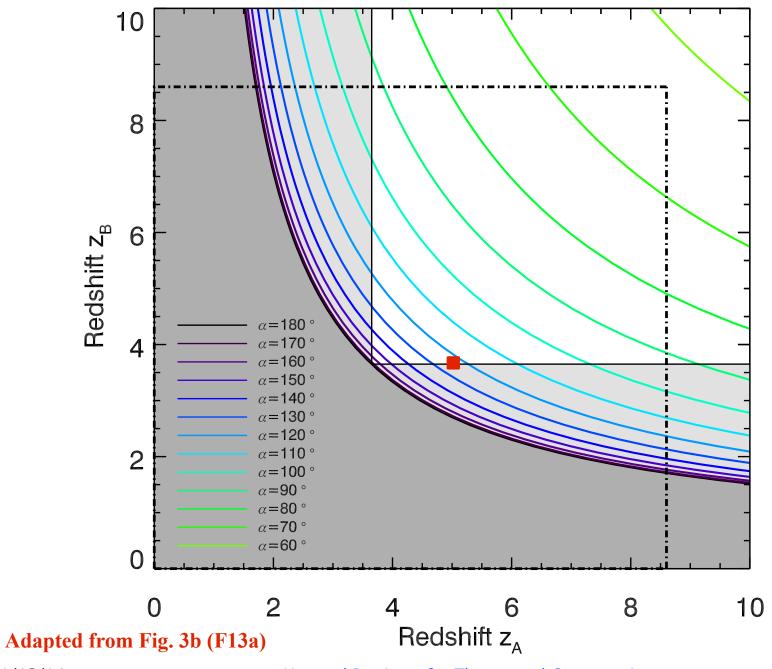


FIX REDSHIFTS, CHANGE ANGLE

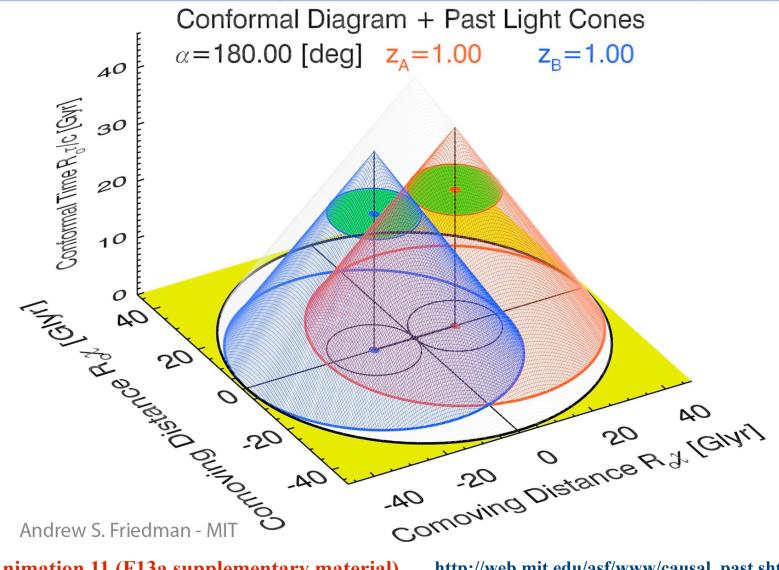


Animations 6-7 (F13a supplementary material) http://prd.aps.org/supplemental/PRD/v88/i4/e044038

http://web.mit.edu/asf/www/causal_past.shtml http://web.mit.edu/asf/www/04_alpha_1_3.shtml



FIX REDSHIFTS, CHANGE ANGLE



Animations 8-9 (F13a supplementary material) http://prd.aps.org/supplemental/PRD/v88/i4/e044038

http://web.mit.edu/asf/www/causal_past.shtml
http://web.mit.edu/asf/www/05_alpha_5_3p65.shtml

FIX ANGLE, CHANGE $Z = Z_A = Z_B$

Animation 11 (F13a supplementary material) http://prd.aps.org/supplemental/PRD/v88/i4/e044038

http://web.mit.edu/asf/www/causal_past.shtml
http://web.mit.edu/asf/www/06 zcrit.shtml

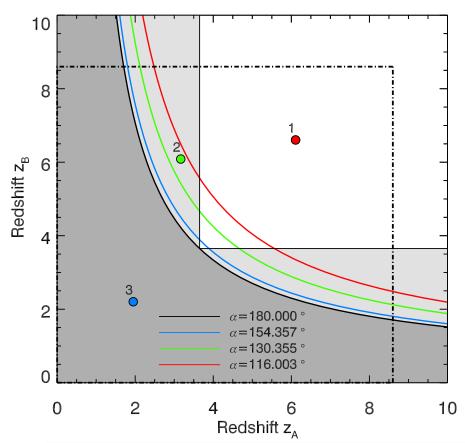
OUTLINE

- 1. The Big Picture: Bell's Theorem
- 2. <u>Cosmic Bell Gedankenexperiment</u>

Gallicchio, Friedman, & Kaiser 2013 (GFK13)

Phys. Rev. Lett. submitted (arXiv:1310.3288)

3. Shared Causal Pasts of Cosmic Events


Friedman, Kaiser, & Gallicchio 2013 (F13a)

Phys. Rev. D. Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

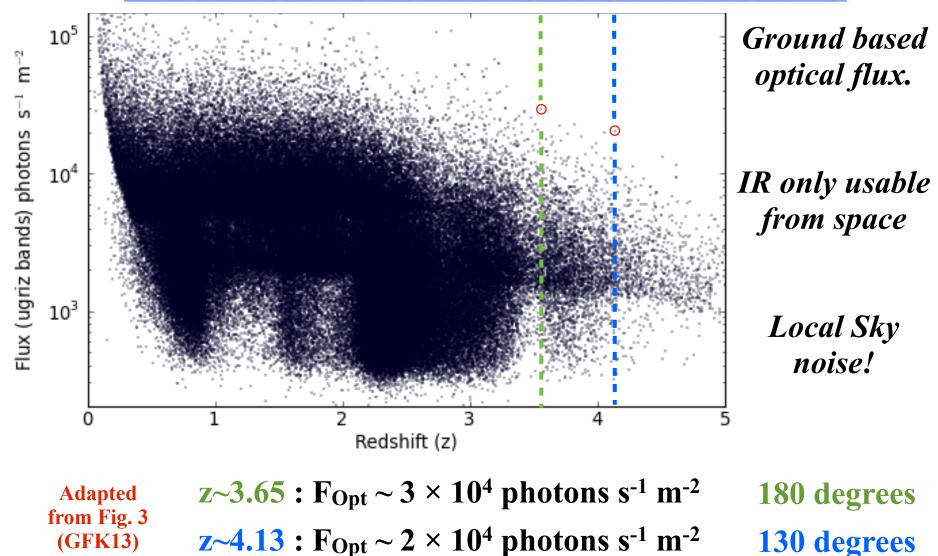
4. Causally Disconnected Quasars

Friedman+2014 in prep. (F14b)

5. Actually Doing the Experiment?

EXAMPLEQUASAR PAIRS

pair 3 - YES shared past with each other & Earth


pair 2 - NO shared past with each other, but A₂ has shared past with Earth

pair 1 - NO shared past with each other or Earth

Fig. 5, Table I (F13a)

Pair	Separation Angle α_i [deg]	Event Labels	$\begin{array}{c} \textbf{Redshifts} \\ z_{Ai}, z_{Bi} \end{array}$	Object Names	$egin{aligned} \mathbf{R}\mathbf{A} \ [\mathrm{deg}] \end{aligned}$	DEC [deg]	$f R \ [mag]$	$egin{array}{c} \mathbf{B} \\ [\mathrm{mag}] \end{array}$
1	116.003	A_1	6.109	SDSS_J031405.36-010403.8	48.5221	-1.0675	16.9	20.1
		B_1	6.606	SDSS_J171919.54+602241.0	259.8313	60.3781	18.6	16.9
2	130.355	A_2	3.167	KX_257	24.1229	15.0481	16.7	17.8
		B_2	6.086	SDSS_J110521.50+174634.1	166.3396	17.7761	16.4	25.1
3	154.357	A_3	1.950	Q_0023-4124	6.5496	-41.1381	14.2	15.4
		B_3	2.203	HS_1103+6416	166.5446	64.0025	14.7	15.4

QUASAR FLUX VS. REDSHIFT

SDSS quasars - photometric and spectroscopic redshifts

LOOPHOLE FREE COSMIC BELL?

Settings Independence

Choose settings with cosmic sources.

Locality

Choose settings with cosmic sources while EPR pair is in flight.

Fair Sampling / Detection Efficiency

Use existing detector technology: efficiency & time resolution

With reasonable experimental parameters, can close all three loopholes simultaneously during quasar visibility window! ~50% experimental runs triggered by cosmic photons. (GFK13)

 \sim 1-meter \sim 50km $\sim 2 \times 10^4$ photons s⁻¹ m⁻² \sim 50-98%

Telescope mirror diameters

Baselines between EPR source and telescopes

Optical quasar flux at z~4.13, separated by 130°

Cosmic photon detector efficiency (APD / TES)

QUASAR CANDIDATES

- Determine which quasar pairs (from existing database of > 1 million objects) satisfy causal independence for given lookback time.
- Choose candidate pairs.
- Design observational program.
- Find best observing site (? Canary Islands)

Working with MIT undergrads on UROP project:

Isabella Sanders and Anthony Mark

Friedman+2014b in prep.

OUTLINE

- 1. The Big Picture: Bell's Theorem
- 2. <u>Cosmic Bell Gedankenexperiment</u>

Gallicchio, Friedman, & Kaiser 2013 (GFK13)

Phys. Rev. Lett. submitted (arXiv:1310.3288)

3. Shared Causal Pasts of Cosmic Events

Friedman, Kaiser, & Gallicchio 2013 (F13a)

Phys. Rev. D. Vol. 88, Issue 4, Id. 044038 (arXiv:1305.3943)

4. Causally Disconnected Quasars

Friedman+2014b in prep. (F14b)

5. Actually Doing the Experiment?

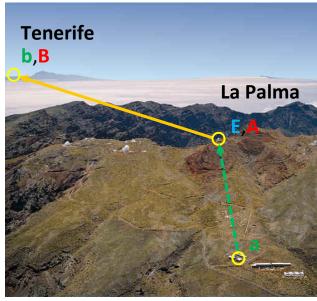
2 OR MORE COSMIC SOURCES

2, 3, or 4 entangled particle states (EPR or GHZ)

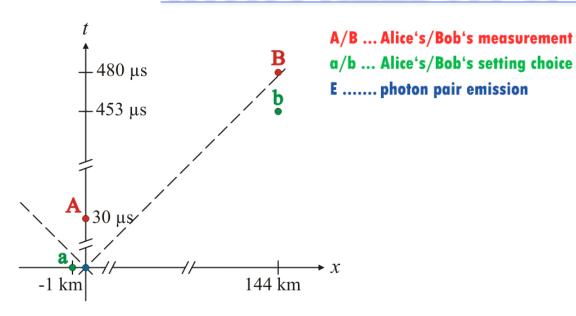
Greenberger, Horne, Zeilinger 1989; Greenberger+1990; Mermin 1990

Each cosmic source pair in set of 2, 3 or 4 satisfies pairwise constraints from F13a

	Optimal space configurations	Redshifts	Feasible Ground- Based Tests	Redshifts	
EPR2	180°	> 3.65	≤ 130°	> 4.13	
GHZ3	120° Equilateral Triangle	> 4.37	≤ 105° Triangular pyramid	> 4.89	
GHZ4	~109.5° Tetrahedron	> 4.69	≤ 75°	≥ 6.5	
GHZ4	90° Square in Plane	> 5.69	Square pyramid		


GFK13; Friedman+2014b in prep.

ZEILINGER GROUP EXPERIMENTS



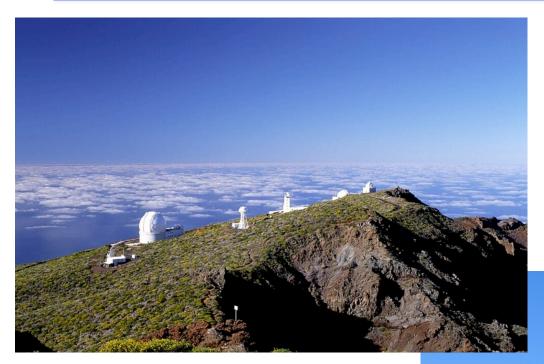

ESA - Optical Ground Station (OGS) 1-m receiver telescope, Laser guide to La Palma

Scheidl+2010, PNAS, 107, 46, p. 19708-19713

VIOLATION OF LOCAL REALISM WITH FREEDOM OF CHOICE

Locality: A is space-like sep. from b and B

B is space-like sep. from a and A


Freedom of choice: a and b are random

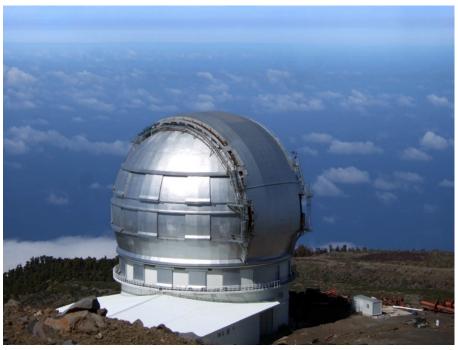
a and **b** are space-like sep. from \mathbf{E}_{λ}

Credit: Johannes Kofler http://www.qi.ubc.ca/Talks/TalkKofler.pdf

Scheidl+2010, *PNAS*, 107, 46, p. 19708-19713

CANARY ISLANDS TELESCOPES

Teide Observatory on the island of **Tenerife in the Canary Islands**


Roque de los Muchachos
Observatory on the island of La
Palma in the Canary Islands

Both operated by the Instituto de Astrofísica de Canarias.

GRAN TELESCOPIO CANARIAS

10.4-m reflecting telescope at Roque de los Muchachos Observatory on La Palma in the Canary Islands

World's largest optical telescope!

POSSIBLE OUTCOMES

Expected

Bell inequalities always violated. Rule out local HV theories as much as possible.

Unexpected

Bell inequality not violated for some cosmic source pairs ???

Strangest

Degree of Bell violation depends on degree of shared causal past of cosmic sources, lookback time to past LC intersection.

Implications for inflation? Quantum gravity?

FUTURE WORK

Find optimal candidate quasars, observing plan.

Friedman+2014b in prep.

Advantages of quasars vs CMB (GFK13)

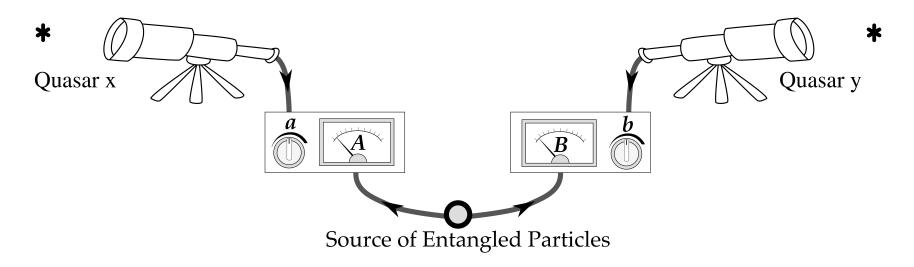
EPR2 vs GHZ3, GHZ4. Ground + space-based tests.

It's Loopholes all the way down...

"Noise Loophole" Need triggers by genuine cosmic photons, not local "noise" photons. Need sufficient signal-to-noise from cosmic sources. (GFK13)

"Inflation Loophole" Shared past during inflation

CONCLUSIONS


An actual Cosmic Bell experiment:

Is well motivated

Feasible in the real world.

Lots of fun to think about!

REFERENCES

Ade+2013, A & A sub., (arXiv:1303.5076)

Aspect+1982, Phys. Rev. Lett., Vol. 49, 25, December 20, p. 1804-1807

Barret & Gisin 2011, Phys. Rev. Lett., vol. 106, 10, id. 100406

Bell 1964, Physics Vol. 1, No. 3, p. 195-200, Physics Publishing Co.

Bell+1989, Speakable & Unspeakable in Quantum Mechanics, American Journal of Phys., Vol. 57, Issue 6, p. 567

Clauser, Horne, Shimony, & Holt 1969, PRL 23, 880

Clauser & Shimony 1978, Rep. Prog. Phys. 41, 1881

Christensen+2013, Phys. Rev. Lett., 111, 120406

Einstein, Podolsky, & Rosen 1935, Phys. Rev., Vol. 47, 10, p. 777-780

Freedman & Clauser 1972, Phys. Rev. Lett., vol. 28, 14, p. 938-941

Friedman, Kaiser, & Gallicchio 2013a, *Phys. Rev. D*, Vol. 88, Iss. 4, id. 044038, 18 p. (arXiv:1305.3943)

Friedman+2014b, ApJ in prep.

Gallicchio, Friedman, & Kaiser 2013=GFK13, Phys. Rev. Lett. submitted (arXiv:1310.3288)

Giustina+2013, Nature, Vol. 497, 7448, p. 227-230

Greenberger, Horne, & Zeilinger 1989, "Going Beyond Bell's Theorem", in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, Ed. M. Kafatos, Kluwer Academic, Dordrecht, The Netherlands, p. 73-76

Greenberger+1990, American Journal of Physics, Volume 58, Issue 12, pp. 1131-1143

Guth 1981, Phys. Rev. D, Vol. 23, 2, p. 347-356

Guth & Kaiser 2005, Science, Vol. 307, 5711, p. 884-890

Hall 2010, Phys. Rev. Lett., vol. 105, 25, id. 250404

Hall 2011, Phys. Rev. A, vol. 84, 2, id. 022102

Maudlin 1994, "Quantum Non-Locality and Relativity", Wiley-Blackwell; 1st edition

Mermin 1990, American Journal of Physics, Volume 58, Issue 8, pp. 731-734

t'Hooft 2007, (arXiv:quant-ph/0701097)

Scheidl+2010, PNAS, 107, 46, p. 19708-19713

Weihs+1998, Phys. Rev. Lett., Vol. 81, 23, Dec 7, p. 5039-5043

Zeilinger 2010, "Dance of the Photons", Farrar, Straus & Giroux; 1st Ed.