Telescope Observing Night

- We will be holding an optional observing night this coming Tuesday, Nov. 8th from 7-9 p.m. on the Science Center roof. We'll be looking at Mars, stellar clusters, binary stars, and more...
- Because we live in lovely cloudy Boston, we have to prepare for inclement weather. We will make an announcement on the course website by 4 p.m. on Tuesday letting you know if the observing session is on for the night or cancelled.

Q&A Monday 11/7

- I was confused by the fact that more massive white dwarfs are smaller in size than less massive ones.
 More specifically, why does gravity compress white dwarfs to different sizes?
- I absolutely loved the part on neutron stars and on how powerful their density was. That power is almost unimaginable to me. Other than that, I found the reading to be pretty clear. Congratulations on the new baby as well.
- Black holes are simply fascinating. The hypothetical situation about the person crossing the event horizon and what could potentially happen to them is unbelievable. For a split second, I felt a little scared that I might ever approach a black hole...

THE DEATHS OF STARS

White Dwarfs, Neutron Stars, Black Holes, Supernova Explosions, and the

Origins of Humanity Science A-47: Cosmic Connections Monday, November 7th 2005

• WHITE DWARFS AND NEUTRON STARS

– Exotic States of Matter

• SUPERNOVA EXPLOSIONS

– How We Are All Made of Stardust

• BLACK HOLES

– Journey to the Dark Side and Beyond

ASTRONOMICAL PROPERTIES

	Mass/ M _{sun}	Radius [km]	Density [g/cm³]	Gravitational Acceleration / 9.8 m/s ²	Escape Velocity [km/s]
Earth	3x10 ⁻⁶	6x10 ³	5.5	1	11
Sun	1	7x10 ⁵	1	27	600
White Dwarf	1	6x10 ³	10 ⁶	3x10 ⁵	6000
Neutron Star	1	10	10 ¹⁴	10 ¹¹	1.5x10 ⁵
Black Hole	3	6	6x10 ¹⁵	5x10 ¹¹	3x10 ⁵

Approximate numbers for typical objects. White Dwarfs can be as massive as 1.4 M_{sun} , Neutron Stars up to ~2-3 M_{sun} , and Black Holes of up to 10⁹ M_{sun} have been found and can be as large as the universe.

STAR WARS

•Gravity vs. pressure.

White Dwarf Star

Earth

NEUTRON STARS

Neutron Star to Attend Harvard

STAR WARS

Astrophysical Object

People

Planets

Protostars

Main Sequence Stars

White Dwarfs Neutron Stars

Quark Stars

Black Holes

Force Fighting Gravity Electromagnetism Electromagnetism Thermal Pressure (gravitational contraction) **Thermal Pressure** (nuclear fusion) electron degeneracy pressure neutron degeneracy pressure quark pressure? **NOTHING!**

PRS QUESTION #1

A Neutron Star has an average density of about 10¹⁴ g/cm³. A teaspoon has a volume of about 5 cm³. Assuming an average person weighs 50kg, which of the following has the most total mass?

- The guest lecturer
- A teaspoon of material from the sun's core
- A teaspoon of white dwarf material
- A teaspoon of neutron star material
- The mass of all six billion human beings on Earth

SN 1994d Hubble Space Telescope SN 1999bh – Katzmann Automated Imaging Telescope & Andy

HISTORICAL SUPERNOVAE

Supernovae in our galaxy (or a nearby galaxy)

<u>Year</u>	<u>Report</u>	<u>Supernove Remnant</u>
1006	China, Japan, Korea, Arab lands, Europe	Identified with radio SNR
1054	China, Japan	Crab Nebula
1181	China, Japan	Possible identification with radio SNR 3C58
1572	Europe (Tycho Brahe), China, Japan	Tycho's remnant
1604	Europe (Kepler), China, Japan, Korea	Kepler's remnant
1987	SN 1987A – Large Magellanic Cloud	Remnant still observable

TYPE IA SUPERNOVAE

Thermonuclear Bombs in Space! Explosions of White Dwarfs in Binary Systems

WD Accretion From Main Sequence Companion

Merger of 2 White Dwarfs

TYPE I I SUPERNOVAE

Gravity Bombs! Gravitational Core Collapse of Massive Stars

Star with M > 8 Msun

The Sun

GAMMA-RAY BURSTS (GRBs)

The Brightest Explosions in the Universe!

Long Duration GRBs Occur along with core collapse supernovae of some massive stars

Short Duration GRBs Probably merging neutron stars

STELLAR EXPLOSION MOVIES

<u>Core Collapse</u> Supernova Movie

LEFTOVER COMPACT OBJECTS

<u>Type of Stellar</u> <u>Explosion</u>	<u>Compact</u> <u>Remnant</u>		
Туре Іа	NOTHING!		
Failed Type Ia	NEUTRON STAR?		
Type II	NEUTRON STAR BLACK HOLE		
Gamma-Ray Burst	BLACK HOLE		

SUPERNOVA REMNANTS

Where do all the elements come from? What about elements heavier than Iron?

WE ARE ALL MADE OF STARS

The Schwarzchild Radius

EVIDENCE FOR BLACK HOLES

<u>Stellar Mass</u> <u>Black Holes</u> M ~ 3 - 20 M_{sun}

$\frac{\text{Supermassive}}{\text{Black Holes}}$ $\text{M} \sim 10^6 - 10^9 \text{ M}_{\text{sun}}$

Gas around a Black Hole Movie

PRS QUESTION #2

If the sun were to magically turn into a 1 solar mass black Hole right now, what would happen to the Earth?

- a). The earth would be sucked into the Black Hole Sun in about 8 minutes.
- b). The earth would start becoming cold & dark in ~8 minutes and then be sucked into the BH sun.
- c). The earth would start becoming cold & dark in
 - ~8 minutes but its orbit would remain unchanged.
- d). Nothing of consequence would happen to the Earth.
- e). Not enough information.

FALLING INTO A BH

• Strange Gravitational Effects Near a Black Hole

- Gravitational Redshift
- Time Dilation
- Tidal Forces
- -Bending of Light

• What would we see?

• What would Darth Vader see?

WHAT'S INSIDE A BLACK HOLE?

THE CLASSIC #1 BESTSELLER

WORMHOLES

 Perhaps a collapsed star is not a Black Hole, but a "wormhole" or cosmic shortcut

IS OUR UNIVERSE A BH?

 Perhaps there are many universes connected via black holes or wormholes

CONCLUSIONS

- The universe is weird!
- White Dwarfs and Neutron Stars are among the most exotic states of matter.
- We are all made of stars.
- Supernova explosions are prerequisites for our existence.
- Black holes of some kind probably do exist.No one knows what's inside a Black Hole.