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Photons from distant astronomical sources can be used as a classical source of randomness to
improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through
Bell’s inequality and delayed-choice quantum eraser tests inspired by Wheeler’s cosmic-scale Mach-
Zehnder interferometer gedankenexperiment. Such sources of random numbers may also be useful
for information-theoretic applications such as key distribution for quantum cryptography. Building
on the design of an “astronomical random-number generator” developed for the recent “cosmic Bell”
experiment [1], in this paper we report on the design and characterization of a device that, with
20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is
greater than or less than 700 nm. Using the 1-meter telescope at the Jet Propulsion Laboratory
(JPL) Table Mountain Observatory, we recorded the time of arrival of astronomical photons in both
color channels from 50 stars of varying color and magnitude, 13 quasars with redshifts up to z = 3.9,
and the Crab pulsar. For bright quasars, the resulting bitstreams exhibit sufficiently low amounts
of mutual information and a sufficiently high ratio of astronomical detections to terrestrial noise to
close both the locality and “freedom-of-choice” loopholes when used to set the measurement settings
in a test of the Bell-CHSH inequality.

I. INTRODUCTION

Quantum mechanics remains extraordinarily success-
ful empirically, even though many of its central notions
depart strongly from those of classical physics. Clever
experiments have been designed and conducted over the
years to try to test directly such features as quantum
nonlocality and wave-particle duality. Many of these
tests depend upon a presumed separation between ex-
perimenters’ choices of specific measurements to perform
and features of the physical systems to be measured.
Tests of both Bell’s inequality and wave-particle dual-
ity can therefore make stronger claims about the nature
of reality when the measurement bases are determined
by events that are separated by significant distances in
space and time from the rest of the experiment [1–5].

Bell’s inequality [6] sets a strict limit on how strongly
correlated measurement outcomes on pairs of entangled
particles can be, if the particles’ behavior is described
by a local-realist theory. Quantum mechanics does not
obey local realism and predicts that for particles in cer-
tain states, measurement outcomes can be correlated in
excess of Bell’s inequality. (In a “local-realist” theory,
no physical influence can travel faster than the speed
of light in vacuum, and objects possess complete sets of
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properties on their own, prior to measurement.) Bell’s
inequality was derived subject to several assumptions,
the violation of any of which could enable a local-realist
theory to account for correlations that exceed the limit
set by Bell’s inequality. (For recent discussion of such
“loopholes,” see Refs. [7–9].) Beginning in 2015, several
experimental tests have found clear violations of Bell’s
inequality while simultaneously closing two of the three
most significant loopholes, namely, “locality” and “fair
sampling” [10–13]. To close the locality loophole, one
must ensure that no information about the measurement
setting or outcome at one detector can be communicated
(at or below the speed of light) to the second detector
before its own measurement has been completed. To
close the fair-sampling loophole, one must measure a suf-
ficiently large fraction of the entangled pairs that were
produced by the source, to ensure that any correlations
that exceed Bell’s inequality could not be accounted for
due to measurements on some biased sub-ensemble.

Recent work has revived interest in a third major
loophole, known as the “measurement-independence,”
“settings-independence,” or “freedom-of-choice” loop-
hole. According to this loophole, local-realist theories
that allow for a small but nonzero correlation between
the selection of measurement bases and some “hidden
variable” that affects the measurement outcomes are able
to mimic the predictions from quantum mechanics, and
thereby violate Bell’s inequality [1, 2, 4, 5, 14–21].

A “cosmic Bell” experiment was recently conducted
that addressed the “freedom-of-choice” loophole [1].
A statistically significant violation of Bell’s inequality
was observed in measurements on pairs of polarization-
entangled photons, while measurement bases for each de-
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tector were set by real-time astronomical observations of
light from Milky Way stars. (This experiment also closed
the locality loophole, but not fair sampling.) The exper-
iment reported in Ref. [1] is the first in a series of tests
which aim to use the most cosmologically distant sources
of randomness available, thus minimizing the plausibil-
ity of correlation between the setting choices and any
hidden-variable influences that can affect measurement
outcomes.

Random bits from cosmologically distant phenom-
ena can also improve tests of wave-particle duality.
Wheeler [22–24] proposed a “delayed-choice” experiment
in which the paths of an interferometer bent around a
distant quasar due to gravitational lensing. By making
the choice of whether or not to insert the final beam split-
ter at the last instant, the photons end up behaving as if
they had been particles or waves all along. (For a recent
review, see Ref. [25].) Instead of using cosmic photons
in the interferometer, a cosmologically distant source of
randomness can be used to dictate run-by-run whether
which-path information gets erased.

Likewise, an astronomical random-number generator
could be used in delayed-choice quantum-eraser experi-
ments. In a recent version of such a test [3], an (earth-
bound) quantum random number generator was used to
either erase or not erase which-path information and de-
termine the particle- or wave-like nature of a photon go-
ing through an interferometer. By space-like separating
this choice from the photon’s space-time path through
the interferometer, interference fringes were erased or not
based on a causally disconnected choice. In our new, pro-
posed test, any local explanation of wave-particle duality
would need to be expanded in scope to the time that the
classical random bit was determined at the astronomical
source, requiring correlations with our experiment from
billions of years in the past.

Beyond such uses in tests of the foundations of quan-
tum mechanics, low-latency astronomical sources of ran-
dom numbers could be useful in information-theoretic
applications as well. For example, such random bits
could be instrumental for quantum-cryptographic key-
distribution schemes (as also emphasized in Ref. [5]),
further solidifying protocols like those described in
Refs. [26–31].

In this paper, we describe the design choices and con-
struction of an astronomical random-number generator,
building on experience gained in conducting the recent
“cosmic Bell” experiment [1]. In Section II we formalize
and quantify what is required to close the freedom-of-
choice loophole in tests of Bell’s inequality. This sets a
minimum signal-to-noise ratio, which in turn dictates de-
sign criteria and choices of astronomical sources. In Sec-
tion III we describe how astronomical random-number
generators may be utilized in delayed-choice quantum-
eraser experiments, to dramatically isolate the selection
of measurements to be performed from the rest of the
physical apparatus. In Section IV we compare different
ways to turn streams of incoming astronomical photons

into an unpredictable binary sequence whose elements
were determined at the time of emission at the astro-
nomical source and have not been significantly altered
since. After discussing the instrument design in Sections
V-VII, we characterize in Section VIII the response of
the instrument when observing a number of astronomical
targets, including ≈ 50 bright Milky Way stars selected
from the HIPPARCOS catalog having different magni-
tudes, colors, and altitudes. To verify the absolute and
relative timing of our system, we observe the Crab pul-
sar, as described in Section IX. Finally, in Section X, we
describe observations of 13 quasars with redshifts rang-
ing from z = 0.1−3.9. In Section XI we discuss the ratio
of quasar photons to “local” photons, quantify the pre-
dictability of the resulting bitstreams, and demonstrate
the feasibility of using such quasars in the next round of
“cosmic Bell” tests. Concluding remarks follow in Sec-
tion XII.

II. CLOSING THE FREEDOM-OF-CHOICE
LOOPHOLE IN BELL TESTS

To address the freedom-of-choice loophole in a cosmic
Bell test, the choice of measurement basis on each side
of the experiment must be determined by an event at a
significant space-time distance from any local influence
that could affect the measurement outcomes on the en-
tangled particles [1, 4]. As we demonstrate in this sec-
tion, an average of at least ≈ 79% of detector settings
on each side must be generated by information that is
astronomical in origin, with a higher fraction required
in the case of imperfect entanglement visibility. We will
label detector settings that are determined by genuinely
astronomical events as “valid,” and all other detector set-
tings as “invalid.” Thus, we will use this framework to
analyze random numbers obtained from both stars and
quasars. As we will see in later sections, “invalid” setting
choices can arise for various reasons, including triggering
on local photons (skyglow, light pollution) rather than
astronomical photons, detector dark counts, as well as
by astronomical photons that produce the “wrong” set-
ting due to imperfect optics.

Experimental tests of Bell’s inequality typically involve
correlations between measurement outcomes A,B ∈
{−1,+1} for particular measurement settings (ak, b`),
with k, ` ∈ {1, 2}. Here a and A refer to the measurement
setting and outcome at Alice’s detector (respectively),
and b and B refer to Bob’s detector. We follow the no-
tation of Ref. [1] and write the Clauser-Horne-Shimony-
Holt (CHSH) parameter, S [32], in the form

S ≡ |E11 + E12 + E21 − E22|, (1)

where Ek` = 2p(A = B|akb`) − 1, and p(A = B|akb`)
is the probability that Alice and Bob measure the same
outcome given the joint settings (ak, b`). Bell’s inequality
places a restriction on all local-realist theories. In terms
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of the quantity S, the Bell-CHSH inequality takes the
form S ≤ 2 [32].

The value of S that one measures experimentally may
be expressed as a linear combination of Svalid, due to
astronomical setting choices, and Sinvalid, due to non-
astronomical setting choices. We may write

Sexp = qSvalid + (1− q)Sinvalid , (2)

where q is the probability that both setting choices are
generated by a given pair of astronomical sources for a
given experimental run. We conservatively assume that
a local-realist theory could exploit the freedom-of-choice
loophole to maximize Sexp by engineering each invalid
experimental run to yield the mathematical maximum of
Sinvalid = 4, while we assume that each valid run would
be limited to Svalid ≤ 2 by the usual Bell-CHSH argu-
ment. A “relaxed” version of the Bell-CHSH inequality
is then Sexp ≤ 4− 2q. This makes the statistical signifi-
cance of any experimental Bell violation highly sensitive
to the fraction of valid settings generated. Since quantum
mechanics predicts a maximum value SQM = 2

√
2 [33],

and since Sexp ≤ 4 − 2q ≤ SQM, we conclude that for a
cosmic Bell experiment to distinguish between the pre-
dictions of quantum mechanics and a local-realist alter-
native that exploits the freedom-of-choice loophole, we
must be able to conduct a sufficiently high fraction q of
our experimental runs using valid astronomical photons:

q ≥ 2−
√

2 . (3)

In this framework, there are local-realist models in
which only one detector’s setting choice needs to be in-
fluenced or predicted by a hidden-variable mechanism in
order to invalidate a given experimental run and produce
S = 4. We conservatively assume that corrupt settings
do not occur simultaneously, allowing the local-realist
alternative to maximally exploit each one. Hence, the
overall fraction of valid settings must be at least q =
1− pAlice − pBob, where p(i) is the probability that a set-
ting at the ith detector is invalid, with i = (Alice, Bob).
Defining q(i) = 1 − p(i) as the fraction of valid settings
on a particular side, the requirement in Eq. (3) may be
written

qAlice + qBob ≥ 3−
√

2 . (4)

For simplicity, if we assume that the experiment is sym-
metric with qAlice = qBob = q∗, we find that q∗ ≥
(3 −

√
2)/2 ' 79.3%. Thus, for a symmetric setup,

roughly eight out of ten photons incident on each ran-
dom number generator need to be of astronomical origin.
When choosing a scheme for generating random numbers,
it is necessary to keep this “signal-to-noise” threshold in
mind.

It is also important to consider that it is very dif-
ficult in practice to achieve a value of S close to the
quantum-mechanical maximum of 2

√
2 ≈ 2.83, due to

imperfections in the experimental setup. For example,

the first cosmic Bell test obtained values of Sexp = 2.43
and Sexp = 2.50 [1]. Under such conditions, q would need
to be correspondingly higher to address the freedom-of-
choice loophole. Also, the closer the measurement of Sexp

is to the validity-modified local-realist bound, the more
experimental runs are required to achieve a statistically
significant Bell violation. Hence the “eight-out-of-ten”
rule derived here represents the bare minimum to close
the freedom-of-choice loophole for pure entangled states
and robust statistics with many experimental runs. In
later sections we measure different sources of invalid de-
tections and find quasars that are on both sides of this
usefulness bound with our telescope.

III. DELAYED-CHOICE EXPERIMENTS

Another application of an astronomical random-
number generator is to use it in an experiment to test
wave-particle duality. The concept of testing wave-
particle duality with a Mach-Zehnder interferometer was
first proposed by John Archibald Wheeler [22–24] and has
been realized via a laboratory-scale Mach-Zehnder inter-
ferometer [34]. Wheeler proposed using the light from a
doubly gravitationally-lensed source of astronomical pho-
tons as a Mach-Zehnder interferometer of cosmological
scale, coupling each image into two inputs of a beam-
splitter. Observation of interference at the output would
suggest that the light took both paths around the gravi-
tational lens and interfered at the beamsplitter, acting as
a wave. Removing the beamsplitter in the Mach-Zehnder
interferometer would prevent the light from recombining,
and the astronomical light would manifest itself as sin-
gle photons which appear at one output or the other but
not both. If one rejects wave-particle duality, the logical
conclusion is that either the choice of inserting the beam-
splitter in the final moments of the light’s journey some-
how retrocausally affected the light’s trajectory across
the cosmos, or that the choice of inserting the beamsplit-
ter was predictable by the light before it embarked on its
journey. (See also Ref. [25].)

Rather than try to interfere astronomical photons with
a gravitational lens, we can realize a similar experiment
that leads to the same logical conclusion. Instead of test-
ing the wave-particle duality of an astronomical photon,
we may use a standard tabletop Mach-Zehnder interfer-
ometer, and use astronomical setting choices to deter-
mine whether to insert or remove the beamsplitter. In
such a setup, the choice of which measurement to per-
form would be made in a causally disconnected way from
the particulars of the behavior of the photon in the in-
terferometer, billions of years before the interferometer
photon had even been created. In this experiment as
well as Wheeler’s original gedankenexperiment, separat-
ing the choice of inserting the beamsplitter from both the
creation of the photon and its journey makes alternate
explanations of wave-particle duality implausible.

Nevertheless, there would still exist a local-realist ex-
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FIG. 1. A proposed experiment to test wave-particle comple-
mentarity, in the spirit of Wheeler’s “delayed-choice” exper-
iment. In our version of a delayed-choice experiment, two-
photon entangled states are produced at S, sending one en-
tangled partner (the “environment” photon) towards W and
the other (the “signal” photon) toward a Mach-Zehnder in-
terferometer (MZI). An astronomical random-number gener-
ator (ARNG) activates an electro-optical modulator (EOM)
in order to rapidly set the measurement basis for the envi-
ronment photon at W , potentially revealing which-path in-
formation about the signal photon. The signal photon at the
MZI acts as a particle or a wave accordingly, even though the
choice of whether to reveal which-path information is made
in a causally disconnected way, potentially billions of years
before the experiment has been run.

planation for the outcomes of such an experiment. Two
local-hidden-variable-like surrogates of the photon that
travels around the interferometer could each take one of
the two paths and accumulate a phase based on their dis-
tance traveled. When they come together, they will ei-
ther see a beam splitter or not. They can either combine
their accumulated phases and act like a wave or they can
ignore their phases and pick one detector over the other
in some deterministic or locally-probabilistic way. In this
way, there would exist a perfectly local-realist explana-
tion for the wave-particle duality manifested by single
particles.

On the other hand, the outcomes of two-photon exper-
iments such as a delayed-choice quantum eraser cannot
be accounted for within a local-realist framework. In
modern delayed-choice quantum-eraser experiments [3],
wave-particle duality is tested by interfering one entan-
gled partner (the “signal” photon) of a two-photon en-
tangled state in a Mach-Zehnder interferometer. Rather
than removing the beamsplitter in the Mach-Zehnder in-
terferometer, a measurement of the other entangled part-
ner (the “environment” photon) is made outside the light
cone of the signal photon to erase which-path informa-
tion. This can be done at the same time or after the sig-
nal photon propagates through the interferometer [3, 25].
See Fig. 1.

In the language of quantum mechanics, these experi-
ments begin with a polarization-enangled state of “sig-
nal” and “environment” photons. Following the discus-
sion in Ref. [3], we may write such a state as

|ψ〉 =
1√
2

(|H〉s|V 〉e + |V 〉s|H〉e). (5)

When the signal photon enters the polarizing beamsplit-
ter at the start of the interferometer, its polarization

state gets mapped onto its path (a or b) through the
interferometer. The state then becomes

|ψ〉 → 1√
2

(|b〉s|V 〉e + |a〉s|H〉e). (6)

If the environment photon is measured in the horizon-
tal/vertical basis, either result collapses the state, re-
vealing which-path information, and no interference is
observed at the second polarizing beamsplitter. If, how-
ever, the environment photon is measured in the circular
basis, the signal photon enters into a superposition of
both paths. In that case, the state can be written as

|ψ〉 → 1

2
[(|a〉s + i|b〉s)|L〉e + (|a〉s − i|b〉s)|R〉e] . (7)

After the final beamsplitter, the paths will combine and
interfere. In each term, the amplitude for each detector
to fire becomes a function of the relative phase due to
path-length differences around the interferometer. Con-
ditioned on whether the environment photon is left- or
right-circularly polarized, the signal photon’s interference
fringes will be 180 degrees out of phase.

For both linear and circular basis choices, the signal
photon enters each detector with equal probability, so
as with any entangled state, information cannot be sent
simply by choosing a measurement basis. Interference
fringes or the lack thereof can only be seen when one
sorts the signal photon’s detections into categories based
on the basis choice and measurement result of the en-
vironment photon. As in tests of Bell’s inequality, any
apparent nonlocality is only nonlocality of correlations.

Any local explanation of the nonlocal correlations in
this experiment would rely on being able to predict
whether the measurement of the environment photon
erases or reveals which-path information of the signal
photon, dictating the wave-like or particle-like behavior
of the signal photon. Setting the environment photon’s
measurement basis with a single astronomical random-
number generator can be used to dramatically constrain
the potential origins of this predictability.

IV. GENERATING ASTRONOMICAL
RANDOMNESS

We consider the two potential schemes for extracting
bits of information from astronomical photons to use as
sources of randomness for use in experiments like those
described in Sections II-III. In general, it is important
that the information extracted be set at the time of the
astronomical photon’s emission, rather than at the time
of detection or any intervening time during the photon’s
propagation. We deem the setting corrupt if this condi-
tion is not met, and we evaluate two methods with par-
ticular emphasis on the mechanisms by which corruption
may occur.
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A. Time of Arrival

The first method is to use the time-of-arrival of the as-
tronomical photons, rather than their color, to generate
bits [4, 5]. We can choose to map time tags to bits based
on whether some pre-specified decimal place of the times-
tamp is even or odd. For example, a 0 could correspond
to the case of a photon arriving on an even nanosecond,
and a 1 for arrival on an odd nanosecond. The main ad-
vantage of this scheme is its simplicity: since timestamps
need to be recorded to close the locality loophole, there is
no need for additional hardware to generate random set-
tings. In addition, it will always be possible to ensure a
near-50/50 split between the two possible setting choices
at each side of the experiment regardless of the nature of
the astronomical source of randomness.

The primary disadvantage of this scheme is that it is
very difficult to quantify galactic and terrestrial influ-
ences on the recorded timestamp of the photon’s arrival.
It is necessary that we be able to quantify the fraction of
photons that are corrupt, as discussed in Section II. In
the remainder of this section, we consider the constraints
on which decimal place in the detection timestamp should
be used to generate random bits.

It is tempting to condition setting choices on the
even/oddness of a sub-nanosecond decimal place, mak-
ing use of deterministic chaos and apparent randomness.
However, the timestamp of a given photon’s arrival at
this level of precision is susceptible to corruption from
myriad local influences which are difficult (perhaps im-
possible) to quantify, such as effects in the interstellar
medium, turbulence in the atmosphere, and timing jit-
ter in the detectors or time-tagging unit, which may
affect the even-odd classification of nanosecond times-
tamps. The atmosphere has an index of refraction
n ≈ 1 + 2.9 × 10−4, which in a 10 km-thick atmosphere
corresponds to the photons arriving ∼ 10 ns later than
they would if traveling in a vacuum [35]. Thus, relying
upon any decimal place less significant than the tens-of-
nanoseconds place to generate a bit admits the possibil-
ity of the atmosphere introducing some subtle delay and
corrupting the generated bits.

Choosing a setting by looking at the even or odd mi-
crosecond timestamps, on the other hand, makes it dif-
ficult to close the locality loophole in tests of Bell’s in-
equality. For example, the first cosmic Bell test used a
setup whose baseline length constrained the maximum
timescale of a single run to < 3× 10−6 s [1], based on the
distance between the source of entangled particles and
the closer of the two measurement stations. It is difficult
to choose a timescale that is long enough to be insensitive
to subtle, unquantifiable influences, yet short enough to
satisfy the locality conditions of the experiment.

In addition, using even/odd timestamps to determine
the setting choice admits the possibility that a local hid-
den variable theory synchronizes its “entangled” photon
emissions to coincide with a particular setting choice.
For these reasons, using the timestamp of astronomi-

cal photons’ arrivals does not appear to be an optimal
method for generating unpredictable numbers of astro-
nomical origin.

B. Colors

An alternate approach, developed for use in the recent
cosmic Bell test [1], is to classify astronomical photons
by designating a central wavelength λ′ and mapping all
detections with λ < λ′ to 0 and detections with λ > λ′

to 1 using dichroic beamsplitters with appropriately cho-
sen spectral responses. The advantage of the wavelength
scheme is that possible terrestrial influences on photons
as a function of wavelength are well-studied and char-
acterized by empirical studies of astronomical spectra,
as well as studies of absorption and scattering in the
atmosphere. In contrast to effects which alter arrival
times, the effects of the atmosphere on the distribution
of photon wavelengths varies over the course of minutes
or hours, as astronomical sources get exposed to a slowly-
varying airmass over the course of a night-long Bell test.
The airmass, and therefore the atmosphere’s corrupting
influence on incoming astronomical photons, can be read-
ily quantified as a function of time.

One important advantage of using astronomical pho-
tons’ color stems from the fact that in an optically linear
medium, there does not exist any known physical pro-
cess that could absorb and re-radiate a given photon at
a different wavelength along our line of sight, without vi-
olating the local conservation of energy and momentum
[1]. For photons of genuinely cosmic origin, certain well-
understood physical processes do alter the wavelength
of a given photon between emission and detection, such
as cosmological redshift due to Hubble expansion, and
gravitational lensing. Neither of these effects, however,
should be an impediment to using astronomical photons’
color to test local-realist alternatives to quantum me-
chanics.

The effects of cosmological redshift are independent
of a photon’s wavelength at emission, and hence treat
all photons from a given astronomical source in a com-
parable way [36, 37]. Gravitational lensing effects are
also independent of a photon’s wavelength at emission
[38], though lensing accompanied by strong plasma ef-
fects can yield wavelength-dependent shifts [39]. Even
in the latter case, however, any hidden-variable mecha-
nism that might aim to exploit gravitational lensing to
adjust the detected wavelengths of astronomical photons
on a photon-by-photon basis would presumably need to
be able to manipulate enormous objects (such as neu-
tron stars) or their associated magnetic fields (with field
strengths B > 108 Gauss) with nanosecond accuracy,
which would require the injection or removal of genuinely
astronomical amounts of energy. Thus, whereas some of
the original hidden-variable models were designed to ac-
count for (and hence be able to affect) particles’ trajec-
tories [40, 41] — including, thereby, their arrival times at
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a detector — any hidden-variable mechanism that might
aim to change the color of astronomical photons on a
photon-by-photon basis would require significant changes
to the local energy and momentum of the system.

The chief disadvantage of using photons’ color in an as-
tronomical random-number generator is that the fluxes
of “red” (λ > λ′) and “blue” (λ < λ′) photons will al-
most never be in equal proportion, and hence will yield an
overall red-blue statistical bias. Such bias in itself need
not be a problem: one may conduct Bell tests with bias in
the frequency with which various detector-setting combi-
nations are selected, by taking account of such bias (or
“excess predictability”) in the analysis of the statistical
significance of any measured violation of Bell’s inequality
[1, 9]. However, a large red-blue bias does affect the dura-
tion of an experiment — whose duration is intrinsincally
limited by the length of the night — because collecting
robust statistics for each of the four joint setting choices
(ak, b`) would prolong the experiment.

A second disadvantage comes from imperfect align-
ment. If the detectors for different colors are sensitive
to different locations on the sky, atmospheric turbulence
can affect the paths of photons and the relative detec-
tion rates. We see evidence of this effect at the sub-
percent-level in the measurements described in Sections
VIII-X: the next photon has a slightly increased proba-
bility of being detected as the same color as the previous
few photons. We quantify this effect in terms of mutual
information in Section XI.

We devote the remainder of this paper to the photon-
color scheme, given its advantages over the timestamp
scheme. Any time-tagging hardware that outputs bits
based on color can also output bits based on timing. Our
time tags pass every test of randomness in the NIST Sta-
tistical Test Suite for which we had sufficient bits to run
them [42]. One may also use the logical XOR of color
and timing bits.

V. DESIGN CONSIDERATIONS

As became clear during the preparation and conduct
of the recent cosmic Bell experiment [1], in designing an
instrument that uses photon colors to generate random-
ness, it is necessary to begin with a model of how settings
become corrupted by local influences, and make design
choices to minimize this. In this section we build on the
discussion in Ref. [1] to characterize valid and invalid set-
tings choices.

One obvious source of potential terrestrial corruption
is from background noise, due to thermal fluctuations in
the detector (or “dark counts”), as well as background
light from the atmosphere (or “skyglow”). We designate

the sum of these two rates as n
(i)
j , where j labels the

two detector arms (red and blue) and i labels the two
random number generators (Alice and Bob) in a test of

Bell’s inequalities. If we measure a count rate of r
(i)
j when

pointing at an astronomical source, then the probability

of obtaining a noise count is simply n
(i)
j /r

(i)
j . In selecting

optics, it is important to select single-photon detectors
which have low dark count rates and a small field of view
on the sky in order to minimize this probability.

A second source of terrestrial corruption is misclassi-
fication of photon colors. A typical way to sort photons
by color is to use a dichroic beamsplitter. However, due
to imperfections in the dichroic beamsplitter’s spectrum,
there is a nonzero probability that a photon in the “red”
wavelength range is transmitted towards the arm desig-
nated for “blue” photons and vice versa. We need to
select dichroic beamsplitters with high extinction ratios
and steep transitions such that the probability of mis-
classification is minimal.

To quantify the contribution from imperfect dichroic
mirrors, we define j′ to be the color opposite to j, that
is, red if j refers to blue and vice versa. Depending on

the source spectrum, some fraction f
(i)
j′→j of photons end

up in the jth arm, despite being of the j′th color. If s
(i)
j

astronomical photons per second of color j are intended
for the ith detector, photons leak into the j′th arm at a

rate of fj→j′s
(i)
j . Knowing r

(i)
j , n

(i)
j , as well as the mix-

ture rates fj′→j , fj→j′ allows us to “unmix” the observed

count rates rj to back out the true fluxes s
(i)
j .

In summary, the rate that the jth detector arm in the
ith detector yields a corrupt setting is at most the sum

of the noise rate, n
(i)
j , and the rate of misclassifications

from the j′th arm, fj′→js
(i)
j′ . Since the total observed

count rate is r
(i)
j , the probability of obtaining an incorrect

setting is

p
(i)
j =

n
(i)
j

r
(i)
j

+
s
(i)
j′ fj′→j

r
(i)
j

. (8)

The overall probability of corruption for a bit is conser-
vatively estimated by maximizing over its red and blue
detector arms. Since the overall probability of corruption
is not necessarily the same for Alice and Bob, we denote
this invalid-bit probability p(i), where

p(i) = max(p
(i)
red, p

(i)
blue) = 1− q(i) , (9)

where the average of the two valid-bit probabilities q(i)

needs to be at least 79.3%, as discussed in Section II.
Note that the j index labels individual detector arms,
whereas the i index labels different observer’s detectors
after maximizing over each detector’s arms.

To minimize an individual detector arm’s corruption
probability pj , it suffices to minimize the quantities nj
by minimizing the dark count and skyglow rates, and to
choose high-quality dichroic beamsplitters to minimize
fj′→j . The total count rate, rj , is maximized when the
atmosphere is most transparent: thus, we will designate
our red and blue observing bands to roughly coincide
with the near-infrared (700 nm − 1150 nm) and optical
(350 nm− 700 nm) respectively [1, 4].
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Several other design considerations are equally impor-
tant. The instrument must be able to point to dim and
distant target objects, which are typically high-redshift
quasars. The dimness of even the brightest high-redshift
quasars in optical and near-infrared (NIR) wavelengths
not only makes it difficult to establish the high signal-to-
noise ratio required, but also makes tracking objects non-
trivial over the duration of a Bell test, which can last for
hours. At the same time, the instrument must generate
settings at a sufficiently high rate to perform the exper-
iment. Each run of a Bell inequality test only closes the
locality and freedom-of-choice loopholes if valid settings
from quasars arrive on both sides within a time window
whose duration is set by the light-travel time between
Alice and Bob. Thus having a high collection efficiency
of the quasar light is doubly important.

VI. INSTRUMENT

Our astronomical random-number generator incorpo-
rates several design features that were developed in the
course of preparing for and conducting the recent cosmic
Bell experiment [1]. A schematic of our new instrument,
constructed at the Harvey Mudd College Department of
Physics, is shown in Fig. 2 and a photo in Fig. 3. It is
housed in a box made of black Delrin plastic of dimen-
sions 30 × 30 × 10 centimeters and weighs 5.5 kg, most
of which is the weight of two single-photon detectors and
the astronomical pointing camera. The instrument was
mounted at the focus of a 1-meter aperture, 15-meter
focal-length telescope at the NASA Jet Propulsion Lab-
oratory’s Table Mountain Observatory. The light from
the telescope is coupled directly into our instrument’s
aperture without using optical fibers to reduce coupling
losses.

The telescope is focused onto a 200 µm pinhole on a
Lenox Laser 45◦ pinhole mirror. The size of this pinhole
was chosen to minimize skyglow background (and there-
fore the predictability due to skyglow) by matching the
2-3 arcsecond astronomical seeing at the Table Mountain
site. This pinhole size corresponds to 2.75 arcseconds on
our 15 m focal-length telescope. The incoming light that
does not make it through the pinhole is reflected by the
mirror and reimaged through a Canon EF-S 60mm F2.8
macro lens onto a ZWO ASI 1600MM cooled 4/3” CMOS
camera, which aids in finding and positioning the source
into the pinhole. Real-time monitoring of this camera
was used to guide the telescope in some observations and
to capture long exposures as in Fig. 4 and Fig. 5.

The light from the object of interest that makes it
through the pinhole gets collimated by a 25 mm diameter,
50 mm focal-length lens. This collimated light gets split
by a 697 nm short-pass dichroic beamsplitter (Semrock
F697-SDi01-25x36). The mostly-visible light (denoted
“blue”) passes through and gets imaged onto one IDQ
ID120 Silicon Avalanche Photodiode detector through a
25 mm diameter, 35 mm focal-length lens. The image
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FIG. 2. This figure shows the intended optical paths of our
astronomical random-number generator (not to scale). As-
tronomical light from multiple objects in the field of view of
the telescope enters at the top right of the schematic. This
light is brought to a focus by the telescope onto the plane
of the pinhole mirror. Most of the light is reflected by the
mirror (yellow) and refocused onto a CCD. However, light
from an object of interest (purple) passes through the pin-
hole, and is then collimated and sorted by color via a system of
one shortpass and one longpass dichroic beamsplitter. These
beams (red and blue) are refocused onto the active area of our
two avalanche photodiodes for detection and timestamping.
The placement of the dichroics is similar to the fiber-coupled
scheme used in Ref. [1].

of the pinhole is reduced to 140µm in diameter, which
is well within the ID120’s 500µm active area, making
for reliable alignment and minimal concern about aber-
rations and diffraction. This alignment was performed
by mounting the final lens on an XY stage attached to
the detector—collimated light hitting the lens slightly off
axis will form an image slightly off axis.

The mostly-infrared (IR) light reflects off of the first
dichroic onto a 705 nm long-pass dichroic beamsplitter
(Semrock FF705-Di01-25x36). Here the small amount of
reflected light (mixed visible/IR) is ignored, but the IR
light that passes through the second dichroic is imaged
by an identical 35 mm focal-length lens onto an identi-
cal ID120 detector. In preparing for the recent cosmic
Bell experiment [1], it was determined that two dichroics
were necessary because a single dichroic’s optical density
was low enough such that a non-negligible fraction of the
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FIG. 3. Photo of our astronomical random-number generator
in the laboratory with the lid off and dichroic mirrors exposed.
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FIG. 4. Using the date of observation (3 July 2016) and the
coordinates of Table Mountain Observatory, it is possible to
compute the angular diameter of Saturn. This enables us to
estimate the size of the pinhole as an ellipse with semimajor
axes of 2.01 and 3.15 arcseconds. The horizontal and verti-
cal lines running through the pinhole are crosshairs to guide
the eye. The field of view calculated via Saturn is consistent
with the field of view computed using telescope and camera
parameters.

light could go either way and would not be determined
by the astronomical object. This arrangement of having
the detector after a transmission rather than a reflec-
tion was chosen because the light transmitted through
these dichroics has less contamination than the reflected
light. The particular pair was selected to minimize the
wrong-way fraction fj→j′ from Section V, while maxi-
mizing the overall detections and roughly splitting the
detector’s spectral response in half.

To detect astronomical photons, we chose ID120 Sili-

PG 1718+481

Pinhole

FIG. 5. Dim objects such as the quasar PG 1718 + 481 (shown
here) were identified by comparing the local field to astronom-
ical catalogs. Dark counts were typically recorded by keeping
the object a few spot-sizes away from the pinhole, for exam-
ple, as the telescope is positioned here.

con Avalanche Photodiode Detectors (APDs) that have
up to 80% quantum efficiency between 350 and 1000 nm,
a 500µm active area so the image of the pinhole fits
well within the active area, and a low (< 100 Hz) spec-
ified dark count rate. These have 300 ps of timing jitter
with an artificially extended deadtime of 420 ns to pre-
vent afterpulsing. They have a photon-to-electrical-pulse
latency of up to 20 ns. The detectors’ active area was
cooled to −40 ◦C and achieved a measured dark count
rate of 40 Hz. At zenith, the background rates due to
skyglow are roughly 20 Hz and 60 Hz in the blue and red
arms respectively. (For comparison, the quasars we ob-
served had rates of 100 to 1000 Hz in each channel.) The
reason for this asymmetry results from a combination of
different optical coupling efficiencies in each arm and the
spectrum of the background skyglow, which tends to be
brighter in the near-infrared than in the visible band.

Signals from the APDs are recorded by an IDQ ID801
Time to Digital Converter (TDC). The relative precision
of time-tags is limited by the 80.955 ps clock rate of the
TDC, and by the 300 ps timing jitter on the APD. Count
rates as a function of time for dark counts and several
stars and quasars are shown in Fig. 6.

As a timing reference, we also record a stabilized 1-
pulse-per-second signal from a Spectrum Instruments
TM-4 GPS unit. (Absolute time can also be recorded
using this GPS unit’s IRIG-B output.) The GPS timing
solution from the satellites is compensated for the length
of its transponder cable, which corresponds to a delay of
77 ns.
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FIG. 6. The total count rate over time for various sources
fluctuates dramatically due to 2− 3 arcseconds of seeing and
telescope pointing, which are on the order of our pinhole size.
The legend entries appear in the same vertical ordering as on
the plot. The small spike in the “Darks + Skyglow” trace
is likely from a small object such as a plane or satellite that
briefly passed through our field of view, or headlights from
a car. The Crab Pulsar’s count rate is unusually stable over
time because the nebula has an extent of several arcminutes.

VII. SPECTRA: ATMOSPHERE, LENSES,
DICHROICS, DETECTOR RESPONSE

Building on the analysis in Ref. [1], we formulate a
model of the instrument’s spectral response in each arm
to characterize its ability to distinguish red from blue
photons. The aim of this section is to compute for our
instrument the fj→j′ parameters, defined as the proba-
bility that photons of type j are detected as photons of
type j′. As described in Section V, such misclassified
photons contribute to “invalid” detector-setting choices.
The parameter fj→j′ depends on the choice of what cut-
off wavelength λ′ we choose to distinguish the photons we
call red (λ > λ′) from blue (λ < λ′). It also depends on
the emission spectra of the astronomical source. These
probabilities can be computed from the atmospheric scat-
tering and absorption, detector quantum efficiencies, and
transmission/reflection probabilities of the optics in each
detector arm. We define the following quantities, which
all are dependent on wavelength:

Nsource(λ): Number distribution of astronomical pho-
tons per wavelength that impinge on the
top of Earth’s atmosphere towards the
telescope, ignoring effects of the interstel-
lar/intergalactic medium. (This is a good
approximation at optical frequencies.)

Nin(λ): Number of photons per wavelength that are
transmitted through the atmosphere and
impinge on the pinhole mirror.

ρlens(λ): Probability of transmission through the colli-
mating or focusing lens.

ρdet(λ): Probability of detection by the APD (quantum
efficiency).

R(λ), B(λ): Probability of entering the red/blue arm
due to the dichroic beamsplitters.

In terms of these quantities, we can compute the overall
spectral response of the red/blue arms of the instrument:

ρblue = B × ρ2lens × ρdet
ρred = R× ρ2lens × ρdet

as well as the parameters fj→j′ :

fb→r =

∫ λ′

0
NinR dλ∫∞

0
NinR dλ

, fr→b =

∫∞
λ′ NinB dλ∫∞
0
NinB dλ

. (10)

For bright stars such as the ones we observe, the quan-
tity Nsource(λ) is well-approximated by a blackbody [43].
For dim, redshifted quasars, we apply the appropriate
Doppler shift to the composite rest-frame spectrum com-
puted in [44]. Once Nsource is obtained, we compute
Nin(λ) via the equation

Nin/Nsource = ρatm(λ) exp(−Xτ(λ)) (11)

where ρatm(λ) is taken from the atmospheric radiative
transfer code MODTRAN [45] and takes into account
the Rayleigh scattering and atmospheric absorption at
zenith.

In order to correct for off-zenith observations, we in-
sert a factor of exp(−Xτ(λ)) where X is the observation
airmass and τ(λ) is the optical depth due to Rayleigh
scattering. In doing so, we make the approximation that
the contribution to fj→j′ due to the optical density of
absorption is negligible compared to Rayleigh scatter-
ing. For the quasars listed in Table II, we compute
fj→j′ values in the ranges 0.16% < fb→r < 0.20% and
0.17% < fr→b < 0.23%, an order of magnitude bet-
ter than the values of fj→j′ achieved with the instru-
mentation used for the original cosmic Bell experiment
in Ref. [1]. We plot in Fig. 7D the products ρblueNin

and ρredNin, where Nin is computed for the quasar PG
1718+481 at an observation altitude of 67 degrees.

VIII. FLUX CALIBRATION WITH HIPPARCOS
STARS

We observed a number of different colored stars
roughly at zenith. Count rates for these, along with
quasars (discussed in Section X) are plotted in Fig. 8 as
a function of astronomical V-band magnitude, denoted
mV . The V-band is defined by a broad filter centered at
551 nm with a full width at half max of 88 nm.

To characterize the dark-count rates of the instrument,
we close the telescope dome and obstruct its aperture
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FIG. 7. A: The atmosphere-attenuated spectrum of a typ-
ical quasar. B: The cumulative transmission curves of two
lenses and the detectors. C: The splitting of photons down
the blue/red arms induced by the dichroic beamsplitters. D:
The product of curves in A-C gives the effective “filter” at
each arm, from which fj→j′ can be computed.

with a tarp, and measure dark counts for about 500 sec-
onds. We find that the variability in count rates, when
integrated over 1 second, is consistent with a Poisson pro-
cess with variance

√
N : In the blue arm we see 41 cps,

and in the red arm we see 93 cps. A comprehensive list
of our star observations is available upon request.

For our telescope and coupling, we find that the as-
tronomical photon flux in counts per second, after sub-
tracting skyglow and dark counts, is given approximately
by

log10(count rate) = 8.12− (0.363± 0.013)mV .

The deviation from the expected slope of −0.4 is due
to detector saturation at count rates higher than ∼ 1 ×
105 Hz.
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FIG. 8. For 50 bright stars in the HIPPARCOS catalog ob-
served at zenith and eleven high-redshift quasars (z < 3.911),
we plot the total (red + blue) background-subtracted count
rate against the V-band magnitude (551±88 nm). Though the
V-magnitude is well into our blue band, it is the only data
available for all observed objects and turns out to be a good
predictor of the observed photon flux, as seen by the best-fit
line that relates the two. We see subtle evidence of detector
nonlinearity at high count rates, as discussed in the text.

IX. TIMING CALIBRATION WITH THE CRAB
PULSAR

One application of high time-resolution optical detec-
tors in astronomy is to precisely measure the pulsation
rate and folded light curve of the Crab Pulsar, whose light
curve exhibits a 33 ms periodicity. This is the only source
we observed whose photon arrival times have an intrin-
sically non-random structure on sub-second timescales.
By using this stable astronomical clock, we can verify
both sub-millisecond and long-term timing stability of
our entire system, including the telescope, optics, detec-
tors, time-tagging module, and GPS absolute reference.

Here we report one such folded light curve with our
combined red and blue observing band. We observed the
Crab Pulsar for one hour on Dec. 21, 2016 (Modified
Julian Date [MJD] = 57743) at Table Mountain Obser-
vatory and simultaneously recorded a 1 pulse-per-second
signal from a TM-4 GPS unit. While the ID801 time-
tagging unit has 81 ps relative timing resolution, the GPS
unit has 25 ns absolute long-term stability referenced to
UTC and 10−11 relative stability over one second. The
1 pulse-per-second signal from the GPS provides a more
stable frequency reference than the internal clock on the
ID801 time-tagging unit and allows for calibration of pe-
riod measurements.

We determine the period by computing the complex
periodogram of our list of detections, defined to be

F (T ) =
∑

t∈all time tags

exp

(
2πi

t

T

)
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FIG. 9. We plot two full periods of the folded light curve
of the Crab Pulsar, in our combined observation band, span-
ning from roughly 350 nm − 1150 nm. The individual detec-
tion events are placed into 256 time bins of equal length. We
compare our measured light curve to that of the high time-
resolution instrument Aqueye [47], which has a similar ob-
serving band to our combined red and blue observing band.
The Aqueye data has been shifted in time, scaled, and given
a DC offset. We observe excellent agreement in the pulse
profile. Our best-fit period T was determined by considering
the periodogram of each photon detection over an hour-long
observation. The y-axis has been normalized such that the
weighted average of the light curve adds up to the average
observed photon flux in counts per second. The

√
N error

bars in each individual time-bin are too small to be seen.

and observe that numerically maximizing |F (T )| over T
gives us the period of the pulsar. We correct for slow
drifts in the time-tagging unit by using the GPS’s one-
pulse-per-second (1pps). We correct for the radial ve-
locity of Earth with respect to the pulsar. We obtain an
estimate of the period in agreement with the Jodrell Bank
ephemeris [46] to within a few parts in 107, as shown in
Table I.

At this level of precision, several sources of error may
be significant. Finite-length sampling effects give a fun-
damental uncertainty ∆Tsampling in the period as de-
termined by our periodogram method. Using the sam-
pling theorem, we estimate the size of this effect to be
∆Tsampling/T ∼ Period/Duration ∼ 10−8. In addition,
our Doppler correction did not correct for the earth’s
variable radial velocity as it rotates on its axis, which
induces a sinusoidal variation in the period T over the
entire duration of our observation with a daily amplitude
of ∆T/T ∼ 10−7.

Once the best-fit period is obtained, we histogram our
photon counts into 256 periodic time bins. The overall
DC offset is a reflection of the dark counts, sky glow, as
well as the light from the pulsar’s surrounding nebula.
The folded light curve is shown in Fig. 9.

X. OBSERVATION OF QUASARS

We recorded photon count rates from a number of
quasars, with V band magnitudes ranging from 12.9 to
16, and redshifts up to z = 3.911. Light travel times
τ are calculated from the maximally-constrained cosmo-
logical parameters from the Planck satellite [48]. The
two most distant quasars we observed emitted their light
over 12 billion years ago, to be compared with the 13.8
billion-year age of the universe. A summary of our quasar
observations, and two measures quantifying the physical
and information-theoretic predictability of bits (p(i) and
I) are presented in Table II.

XI. QUALITY OF RANDOMNESS

In addition to quantifying the fraction of valid runs as
was done in Ref. [1], we may assess the quality of ran-
domness statistically to yield a measure of predictability.
The NIST Statistical Test Suite [42] provides a device-
independent statistical approach to evaluate the quality
of the output of any random-number generator given a
sufficiently large number of bits. When using timestamps
to generate random bits based on whether photons arrive
on an even or odd nanosecond, we find that our random
numbers pass the NIST test suite, consistent with the
findings in Ref. [5]. When using photon colors to gen-
erate random bits, our data fail the NIST tests, largely
due to the existence of an overall bias in red-blue count
rates.

To quantify imperfect statistical randomness in a bit-
stream, we may consider the mutual information between
a moving window of m bits and the (m+ 1)th bit, which
we denote as I(m;m + 1). If each bit were truly inde-
pendent, this mutual information would be zero, even if
the probability to get a 0 or 1 was not 50%. To define
I(m;m+1), let Xm denote the set of all length-m binary
strings, and let p(x) be the probability that an m-bit
string within our bitstream is x ∈ Xm. Similarly, let p(y)
be the probability that the next bit is y ∈ {0, 1}. If we
define p(x, y) to be the probability that a string of m+ 1
bits are x followed by y, then the mutual information in
our data is defined to be

I(m;m+ 1) =
∑
x∈Xm

∑
y∈{0,1}

p(x, y)× log2

(
p(x, y)

p(x)p(y)

)
.

(12)
Note that if the next bit is independent of the m bits
preceding it, then p(x, y) = p(x)p(y) and the mutual in-
formation vanishes.

Estimating the true mutual information in a sample
of length N , denoted IN (m;m+ 1), by using experimen-
tal estimates of the probabilities p(x, y), p(x), and p(y)
is unreliable. Statistical fluctuations in the finite-sample
estimates p̂(x, y), p̂(x), and p̂(y) of these probabilities
causes the amount of mutual information in the dataset
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MJD T (ms) Discrepancy (∆T/T ) Notes
57743 33.730283 — Jodrell Bank ephemeris (interpolated)
57743 33.729767 −1.9× 10−5 Using ID801 internal clock (obs.)
57743 33.730654 +1.1× 10−5 Clocked to GPS reference (obs.)
57743 33.730290 +2.8× 10−7 Corrected for relative velocity (vr = −3067 m/s)

TABLE I. Using Jodrell Bank’s monthly measurement of both the pulsar period and the period derivative [46], we can compute
the expected pulsar period (T ) on our observation date (specified by Modified Julian Date, MJD). As expected, our measure-
ments of the period are closer to the Jodrell Bank prediction when we use an external frequency reference, and when we correct
for the radial velocity of the Earth with respect to the Crab pulsar as it moves around the Sun.

Name Redshift (z) τ (Gyr) B V blue (cps) red (cps) valid fraction q(i) max info I × 104

3C 273 0.173 2.219 13.05 12.85 672 1900 0.884 87.8
HS 2154+2228 1.29 8.963 15.2 15.30 227 503 0.774 9.91
MARK 813 0.111 1.484 15.42 15.27 193 633 0.703 7.62
PG 1718+481 1.083 8.271 15.33 14.6 176 473 0.682 3.07
APM 08279+5255 3.911 12.225 19.2 15.2 684 1070 0.647 5.39
PG1634+706 1.337 9.101 14.9 14.66 121 285 0.572 3.38
B1422+231 3.62 12.074 16.77 15.84 123 358 0.507 4.22
HS 1603+3820 2.54 11.234 16.37 15.99 121 326 0.501 4.78
J1521+5202 2.208 10.833 16.02 15.7 106 309 0.476 2.39
87 GB 19483+5033 1.929 10.409 unknown 15.5 98 241 0.464 0.32
PG 1247+268 2.048 10.601 16.12 15.92 111 333 0.453 2.92
HS 1626+6433 2.32 10.979 unknown 15.8 87 213 0.398 1.81

TABLE II. A list of quasars observed, their corresponding redshifts z, and light travel times τ . We report their B and V
magnitudes from the SIMBAD Astronomical Database and our observed 75th percentile count rates. The table is sorted by
the fraction of valid settings q(i) for each quasar observation, based on both off-target counts measured at each observation’s
airmass and rates for quasar photons to go the wrong way through our imperfect dichroics calculated from each quasar’s
emission spectrum. Predictability, as measured by I = maxm IN (m;m + 1), is the small mutual information we measured in

each quasar’s bitstream and corresponds to a negligible reduction in q(i). Even using a small (1 m) telescope at a light-polluted
Los Angeles observing site, we find that the first quasar (3C 273) paired with either of the next two would yield qAlice + qBob

in excess of the limit set by Eq. (4) for addressing the freedom-of-choice loophole.

to be overestimated if we simply “plug in” the experi-
mental probability estimates p̂ into Eq. (12), which takes
as input the true probabilities p. We denote this biased
estimator by ÎN (m;m + 1). However, in the limit that
the dataset is large (N � 1), and if m is fixed, the
amount of positive bias in the estimated mutual infor-
mation ÎN (m;m + 1) is dependent only on N and can
be represented as a perturbation away from the true mu-
tual information I(m;m+ 1). To construct an unbiased
estimator, we adopt the ansatz [49]

ÎN (m;m+ 1) = I(m;m+ 1) +
a

N
+

b

N2
, (13)

where I(m;m + 1), a, and b are fixed, unknown con-
stants. To determine these constants, we first compute
ÎN (m;m + 1) for the entire dataset. By splitting the
dataset into 2 chunks of size N/2, we may estimate

ÎN/2(m;m+1) by averaging the naive estimate from both
chunks. Repeating this procedure for 4 chunks of size
N/4 gives us a system of three equations linear in the
unknowns I(m;m+ 1), a, and b.

From this procedure, we compute an unbiased esti-
mate of the mutual information in the bits we gener-
ate when taking on-quasar data as well as data taken
when pointing at the sky slightly off-target. We compute

I(m;m + 1) for m = 1, 2, . . . 6 lookback bits on datasets
of length N > 216. To determine whether our estimates
are consistent with zero mutual information, we com-
pare our estimates of IN (m;m + 1) against fifty simu-
lated datasets, each with the same length and the same
red/blue bias but with no mutual information. Examples
of a quasar bitstream with almost no mutual information
(PG 1718+481) and a quasar bitstream with nonzero mu-
tual information (3C 273) are shown in Fig. 10.

For the quasars in Table II, we observe that the ran-
dom bits generated from colors in 8 out of 12 datasets
exhibit mutual information that is statistically signifi-
cantly different from zero, though still very small. This
hints at the possibility of some nontrivial structure in the
data which may be induced by physical effects or system-
atic error. In 11/12 datasets, the maximum information
I = maxm I(m;m+1) is less than 0.001, while for the ex-
ceptionally bright quasar 3C 273 (V = 12.9), we measure
I ≈ 0.009. One way to realize a mutual information of
0.001 is to have one in every 1000 bits be a deterministic
function of the previous few bits instead of being ran-
dom. Even in the worst case of 0.009, the amount of pre-
dictability is only increased negligibly compared to the ef-
fect from skyglow, and is well below the threshold needed
to address the freedom-of-choice loophole in a Bell test.
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FIG. 10. The experimental estimate of the mutual informa-
tion between a bit and the m bits preceding it, for m =
1, . . . , 6, for two different quasars. To check for nonzero mu-
tual information in our on-target data (open circles, purple
online) and off-target data (closed circles, black), we esti-
mate the mutual information of 50 simulated datasets with
the same length and the same red-blue bias with no mutual
information, and shade 2σ error bars about the mean. Error
bars for on-target and off-target data are denoted with dashed
and dotted lines respectively. For the quasar PG1718+481,
we find that the experimentally observed mutual information
in the on-target as well as the off-target data is consistent
with zero, while for the exceptionally bright quasar 3C 273,
the on-target data deviates significantly from zero.

For example, in the recent cosmic Bell experiment [1],
violations of the Bell-CHSH inequality were found with
high statistical significance (>7 standard deviations) for
an experiment involving ∼ 105 detected pairs of entan-
gled photons, even with excess predictability in each arm
of each detector of order p(i) ∼ 0.1.

Upon examining the experimental probability esti-
mates p̂(x, y) that went into the mutual information cal-
culation, we identified two systematic sources of non-
randomness, both of which are exacerbated at high

fluxes. The first mechanism for non-randomness is de-
tector saturation. After a detection, the detector has a
420 ns deadtime window during which a detection is im-
probable. Hence for sufficiently high count rates (such
as those experienced when observing stars), it is much
more likely to observe a blue photon following a red one
and vice versa than multiple photons of the same color
in a row. While we see this effect in our calibration data
with HIPPARCOS stars, the count rates necessary for
this effect to be important (105 − 106 counts per sec-
ond) far exceed what is observed with quasars. These
are eliminated by imposing the same deadtime window
in the other channel and removing (in real time or in
post-processing) any detection that is within the dead-
time of any previous detection from either channel.

The second mechanism is a consequence of imper-
fect alignment combined with random atmospheric see-
ing. Within our device’s pinhole, we know there ex-
ists a “sweet spot” for optimal coupling to the blue de-
tector, and a slightly different sweet spot for optimal
alignment with the red detector. As the image of the
quasar twinkles within the pinhole on timescales of mil-
liseconds, its instantaneous scintillation pattern overlaps
differently with these sweet spots. The result is that on
scales of less than a millisecond, the conditional proba-
bility p(x → y) of receiving detection y given previous
detections x is higher than the average probability p(y).
For example, for quasar 3C273 we see p(10111 → 1) =
p(101111)/p(10111) > p(1).

Since atmospheric seeing is a consequence of random
atmospheric turbulence, it is a potential source of local
influences on astronomical randomness. It can be miti-
gated by careful characterization of the optical alignment
of the system, making sure that the sweet spots of both
detector arms overlap to the greatest extent possible,
and observing under calm atmospheric conditions. For
a larger telescope in a darker location where the signal
to background ratio is higher, this would be a relatively
larger effect on the fraction of valid runs.

XII. CONCLUSION

Building on the design and implementation of astro-
nomical random-number generators in the recent cosmic
Bell experiment [1], we have demonstrated the capabil-
ities of a telescope instrument that can output a time-
tagged bitstream of random bits based on the detection
of single photons from astronomical sources with tens of
nanoseconds of latency. We have further demonstrated
its feasibility as a source of random settings for such ap-
plications as testing foundational questions in quantum
mechanics, including asymptotically closing the freedom-
of-choice loophole in tests of Bell’s inequality, and con-
ducting a cosmic-scale delayed-choice quantum-eraser ex-
periment. Beyond such foundational tests, astronomical
sources of random numbers could also be of significant
use in quantum-cryptographic applications akin to those
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described in Refs. [5, 26–31].
Other interesting applications of this device may be

found in high time-resolution astrophysics. For exam-
ple, it might be possible to indirectly detect gravitational
waves and thereby perform tests of general relativity with
the careful observation of several optical pulsars using
future versions of our instrument and larger telescopes,
complementing approaches described in Refs. [50–54].
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[47] C. Germanà, L. Zampieri, C. Barbieri, G. Naletto,
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