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Causal Alignment

Compared to a standard Bell test, the time-dependent
locations of the stars on the sky relative to our ground-
based experimental sites complicate the enforcement of
the space-like separation conditions needed to address
both the locality and freedom-of-choice loopholes. For
example, the photon from star A? must be received by
Alice’s stellar photon receiving telescope (Rx-SP) before
that photon’s causal wave front reaches either the Rx-SP
or the entangled photon receiving telescope (Rx-EP) on
Bob’s side, and vice versa.

To compute the time-dependent durations τk
valid(t) (for

k = {A, B}) that settings chosen by astronomical photons
remain valid, we adopt a coordinate system with the cen-
ter of the Earth as the origin. The validity times on each
side due to the geometric configuration of the stars and
ground-based sites are then given by

τA
valid(t) =

1
c

n̂S A (t) · (~rA − ~mB) +
n
c

[
|~mA − ~s| − |~mB − ~s|

]
−
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c
|~rA − ~mA|
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valid(t) =

1
c
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n
c

[
|~mB − ~s| − |~mA − ~s|

]
−
ηB

c
|~rB − ~mB|, (1)

where~rA is the spatial 3-vector for the location of Alice’s
Rx-SP, ~mA is the spatial 3-vector for Alice’s Rx-EP (and
likewise for ~rB and ~mB on Bob’s side), ~s is the location of
the entangled photon source, and c is the speed of light in
vacuum. The time-dependent unit vectors n̂S A (t), n̂S B (t)
point toward the relevant stars, and are computed using
astronomical ephemeris calculations. Additionally, n is
the index of refraction of air and ηA, ηB parametrize the
group velocity delay through fiber optics / electrical ca-
bles connecting the telescope and entangled photon de-
tectors. To compute τk

valid(t), we make the reasonable ap-

proximation that the Rx-SP and Rx-EP are at the same
spatial location on each side, such that ~rA = ~mA and
~rB = ~mB, and the computations require the GPS coor-
dinates of only 3 input sites (see Table I). This assumes
negligible delays from fiber and electrical cables via the
ηA, ηB terms. Negative validity times τk

valid(t) for either
side would indicate an instantaneous configuration that
was out of “causal alignment,” in which at least one set-
ting would be invalid for the purposes of closing the lo-
cality loophole. For runs 1 and 2, τk

valid(t) > 0 for the
entire duration of 179 s, with minimum times in Table I.

We subtract the time it takes to implement a set-
ting with the electro-optical modulator, τset ≈ 170 ns,
and subtract additional conservative buffer margins τk

buffer
(0.38 µs for Alice and 1.76 µs for Bob) to determine the
minimum time windows τk

used in Eq. (2) utilized during
the experiment (see Table II):

τk
used = min

t

{
τk

valid(t)
}
− τk

buffer − τset, (2)

where τset includes the total delays on either side due to
reflections inside the telescope optics, the SPAD detec-
tor response, and electronic readout on the astronomi-
cal receiver telescope side as well as the time to switch
the Pockels cell and electronically use the FPGA board
to output a random number. The next section conser-
vatively estimates τatm ≈ 18 ns for the delay due to the
index of refraction of the atmosphere for either observer.
While τatm is not explicitly considered in Eq. (2), it is
well within the buffer margins, since τk

buffer � τatm,
which also encompass any small inaccuracies in the tim-
ing or distances between the experimental sites.

Although τk
valid(t) depends on time, motivating our use

of τ̄k
valid ≡ mint{τ

k
valid(t)} when computing τk

used, the ac-
tual values of τk

valid changed very little during our observ-
ing windows. For the stars used in experimental run 1,
∆τA

valid = 2.96 ns and ∆τB
valid = 17.26 ns; for experimen-
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tal run 2, ∆τA
valid = 18.97 ns and ∆τB

valid = 17.27 ns. The
largest of these differences represents less than 1% of the
relevant τ̄k

valid.
By ensuring that the Pockels cell switched if it had

not been triggered by a fresh setting within the last
τA

used = 2 µs for Alice and τB
used = 5 µs for Bob, we only

record and analyze coincidence detections for entangled
photons obtained while the settings on both sides remain
valid.

Atmospheric Delay
The air in the atmosphere causes a relative delay be-

tween the causal light cone, which expands outward at
speed c, and the photon, which travels at c/n, where n is
the index of refraction of air. We estimate this effect by
computing the light’s travel time through the atmosphere
on the way to the observer. If the atmosphere has index
of refraction n and scale height z0, the delay time is

∆t =
(z0 − h)X(n − 1)

c
(3)

where X is the airmass. The minimum elevation of each
stellar photon receiving telescope is h = 200 m above
sea level, and the minimum altitude angle is δ = 24◦

above the horizon with airmass X ≈ 2.5 (see Tables I-
II). Neglecting the earth’s curvature (which is a conser-
vative approximation), we use z0 = 8.0 km and the index
of refraction at sea level of n − 1 ≈ 2.7 × 10−4 [1]. The
delay between the arrivals of the causal light cone and
the photon itself may be conservatively estimated to be
∆t = 17.6 ns due to the atmosphere.

Source Selection

We used custom Python software to select candidate
stars from the Hipparcos catalogue [2, 3] with parallax
distances greater than 500 ly, distance errors less than
50%, and Hipparcos Hp magnitude between 5 and 9
to avoid detector saturation and ensure sufficient detec-
tion rates. Telescopes pointed out of open windows at
both sites (see Table I). A list of ∼100-200 candidate
stars were pre-selected per side for each night due to the
highly restrictive azimuth/altitude limits. Candidate stars
were visible through the open windows for ∼ 20-50 min-
utes on each side.

Due to weather, seeing conditions, and the uncertain-
ties in aligning the transmitting and receiving telescope
optics for the entangled photon source, it was not possi-
ble to pre-select specific star pairs for each experimen-
tal run at a predetermined time. Instead, when condi-
tions were stable, we selected the best star pairs from
our pre-computed candidate lists that were currently vis-
ible through both open windows, ranking stars based on
brightness, distance, the amount of time each would re-
main visible, the settings validity time, and the airmass

at the time of observation. The 4 bright stars we actually
observed for runs 1 and 2 were ∼5-6 mag (see Table II).
Combined with the geometric configuration of the sites
(see Table I), selection of these stars ensured sufficient
setting validity times on both sides during each experi-
mental run of 179 seconds.

Site Lat.◦ Lon.◦ Elev. [m] Telescope [m]
Telescope A 48.21645 16.354311 215.0 0.2032

Source S 48.221311 16.356439 205.0 . . .
Telescope B 48.23160 16.3579553 200.0 0.254

TABLE I. Latitude, Longitude, Elevation, for Alice (A), Bob
(B) and the Source (S), and aperture diameter of the stellar pho-
ton receiving telescopes.

Lookback Times

For stars within our own galaxy, the lookback time tk
to a stellar emission event from a star dk light years away
is tk = dk years. For example, Hipparcos Star HIP 2876
is located dB = 3624 light years (ly) from Earth, and
its photons were therefore emitted tB = 3624 years prior
to us observing them (see Table II). The lookback time
tEk to when the past light cone of a stellar emission event
from star k intersects Earth’s worldline is tEk = 2dk years.

The lookback time to the past light cone intersection
event tAB (in years) for a pair of Hipparcos stars is [4]

tAB =
1
2

(
dA + dB +

√
d2

A + d2
B − 2dAdB cos(α)

)
, (4)

where dA, dB are the distances to the stars (in ly) and α
is the angular separation (in radians) of the stars, as seen
from Earth. See the lower left panel of Fig. 1.

Ignoring any covariance between dA, dB, and α, and
assuming the error on α (σα) is negligible compared to
the distance errors (σdi ), the 1σ lookback time error is
approximately given by

σtAB ≈

√∑
(i, j) σ

2
di

[
tAB −

d j

2 (1 + cosα)
]2

2tAB − dA − dB
, (5)

where (i, j) ∈ {(A, B), (B, A)}.

Experimental Details

The entangled photon source was based on type–
II spontaneous parametric down conversion (SPDC) in
a periodically poled KTiOPO4 (ppKTP) crystal with
25 mm length. Using a laser at 405 nm, the ppKTP
crystal was bi-directionally pumped inside a polariza-
tion Sagnac interferometer generating degenerate polar-
ization entangled photon pairs at 810 nm. We checked
the performance of the SPDC source via local measure-
ments at the beginning of each observation night. Sin-
gles and coincidence rates of approximately 1.1 MHz and
275 kHz, respectively, correspond to a local coupling ef-
ficiency (i.e., coincidence rate divided by singles rate)
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FIG. 1. Run 1’s 1+1 D space-time diagrams (with time on the y-axis and one spatial dimension on the x-axis) are shown in each
column, left to right, for 3 frames: (1) laboratory, (2) simultaneous entangled photon pair detection, and (3) simultaneous stellar
photon emission. Relevant space-time regions are shown for Alice (blue) and Bob (red). The spatial axis onto which all events
were projected (red line in Fig. 3 for lab frame) was chosen to minimize its distance to Alice and Bob. Slanted black lines in the
second and third columns indicate Lorentz boosts relative to the lab frame in the first column. (Top row) Space-time diagrams for
the experiment. Solid blue and red areas denote space-time regions for each stellar photon to provide a valid detector setting in each
frame. Scales for the x- and y-axes are in units of light-microseconds and microseconds, respectively. (Bottom row) Zoomed out
space-time diagrams with past light cones for the stellar emission events observed by Alice (blue) and Bob (red). Units for the x- and
y-axes are in light years and years, respectively. The lower left panel includes labels for quantities computed in the Lookback Times
secion of the SM using the projected stellar distances along the chosen spatial axis (with projected angular separation α = 180◦).
The upper diagrams zoom in at the tip of the light cone at the origin of the bottom row plots.

of roughly 25%. In run 1 (run 2), the duty cycle of Al-
ice’s and Bob’s measurements – i.e., the temporal sum
of used valid setting intervals divided by the total mea-
surement time per run – were 24.9% (22.0%) and 40.6%
(44.6%), respectively, resulting in a duty-cycle for valid
coincidence detections between Alice and Bob of 10.1%
(9.8%). From the measured 136 332 (88 779) total valid
coincidence detections per run, we can thus infer the total
two-photon attenuation through the quantum channels to
Alice and Bob of 15.3 dB (16.8 dB).

Quality of Setting Reader

The value of the observed CHSH violation is highly
sensitive to the fraction of generated settings which
were in principle “predictable” by a local hidden-variable
model. For this reason, it is important to have a high-
fidelity spectral model of the setting generation pro-

cess. In our analysis, we conservatively assume that local
noise and incorrectly generated settings are completely
predictable and exploitable. An incorrectly generated
setting is a red photon that generates a blue setting (or
vice versa) by ending up at the wrong SPAD.

In this section we compute the fractions of incorrectly
generated settings fr→b and fb→r. For example, fr→b is
the conditional probability that a red photon goes the
wrong way in the dichroic and ends up detected as a blue
photon, generating the wrong setting. These fractions are
highly sensitive to the transmission and reflection spec-
tra of the two dichroic mirrors in each setting generator.
They are somewhat less dependent on the spectral dis-
tribution of photons emitted by the astronomical source,
on absorption and scattering in the Earth’s atmosphere,
the anti-reflection coatings on the optics, and the SPAD
quantum efficiencies.
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Run Side HIP ID RA◦ DEC◦ Hp az◦k alt◦k dk ± σdk [ly] τ̄k
valid [µs] Trials S exp p-value ν

1 A 56127 172.5787 -3.0035 4.8877 199 37 604 ± 35 2.55 136 332 2.425 1.78 × 10−13 7.31
B 105259A 319.8154 58.6235 5.6430 25 24 1930 ± 605 6.93

2 A 80620 246.9311 -7.5976 5.2899 171 34 577 ± 40 2.58 88 779 2.502 3.96 × 10−33 11.93
B 2876 9.1139 60.3262 5.8676 25 26 3624 ± 1370 6.85

TABLE II. More complete version of main text Table I. For Alice and Bob’s side, we list Hipparcos ID numbers, celestial coor-
dinates, Hipparcos Hp band magnitude, Azimuth (clockwise from due North) and Altitude above horizon during the observation,
and parallax distances (dk) with errors (σdk ) for stars observed during runs 1 and 2, which began at UTC 2016-04-21 21:23:00 and
2016-04-22 00:49:00, respectively, each lasting 179 s. τ̄k

valid = mint{τ
k
valid(t)} from Eq. (1) is the minimum time that detector settings

are valid for side k = {A, B} during each experimental run, before subtracting delays and safety margins (see Eqs. (1)-(2) and main
text Fig. 2). Star pairs for runs 1 and 2 have angular separations α of 119◦ and 112◦ on the sky, with past light cone intersection
events occurring 2409 ± 598 and 4040 ± 1363 years ago, respectively. The last 4 columns show the number of double coincidence
trials, the measured CHSH parameter S exp, as well as the p-value and number of standard deviations ν by which the null hypothesis
may be rejected, based on the Method 3 analysis, below.

FIG. 2. 2+1 D space-time diagrams with past light cones for stellar emission events A? and B? for experimental run 1 (left) and
run 2 (right). The time axis begins 5000 years before event O on Earth today, with 2 spatial dimensions in the x-y plane and the
third suppressed. The stellar pair’s angular separation on the sky is the angle between the red and blue vectors. Our data rule out
local-realist models with hidden variables in the gray space-time regions. We do not rule out models with hidden variables in the
past light cones for events A? (blue), B? (red), or their overlap (purple). Given the earlier emission time B? for run 2, that run
excludes models with hidden variables in a larger space-time region than run 1 (modulo the parallax distance errors in Table II).
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FIG. 3. Overhead view of Vienna with experimental sites from
Table I. Azimuthal directions of stars observed during runs 1
and 2 are shown (see Table II). The red line denotes the pro-
jected spatial axis for the 1+1 D space-time diagrams in Figure
1. (Background graphic taken from Google Maps, 2016.)

A system of dichroic beamsplitters which generates
measurement settings from photon wavelengths can be
modeled by two functions ρred(λ) and ρblue(λ), the prob-
ability of transmission to the red and blue arms as a
function of photon wavelength λ. Ideally, photons with
wavelength λ longer than some cutoff λ′ would not ar-
rive at the blue arm: ρblue(λ) = 0 for λ > λ′. Sim-
ilarly, ρred(λ) = 0 for λ ≤ λ′ would ensure that blue
photons do not arrive at the red arm. Due to imper-
fect dichroic beamsplitters, however, it is impossible to
achieve ρblue(λ > λ′) = 0 and ρred(λ ≤ λ′) = 0.

The total number of blue settings generated by errant
red photons can be computed as

Nr→b(λ′) =

∫ ∞

λ′
ρblue(λ) Nin(λ) dλ, (6)

where Nin(λ) is the spectral distribution of the stellar
photons remaining after losses due to the atmosphere,
anti-reflection coatings, and detector quantum efficiency.
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Then the fraction fr→b can be computed by normalizing

fr→b =
Nr→b(λ′)

Nr→b(λ′) + Nr→r(λ′)
. (7)

We may then compute the ρ’s from measured dichroic
mirror transmission and reflection curves and model
Nin(λ). Finally, it is important to note that our red-
blue color scheme is parametrized by the arbitrary cut-
off wavelength λ′. We may choose λ′ to minimize the
overall fraction of wrong settings,

λ′ = arg min
{

Nr→b + Nb→r

Nr→r + Nr→b + Nb→r + Nb→b

}
. (8)

For the four stars in the two observing runs, and the
model of Nin(λ) described in the next section, the wrong-
way fractions are tabulated in Table III. One typical anal-
ysis is illustrated in Fig. 4.

Characterizing Dichroics

Our setting reader uses a system of one shortpass (s)
(Thorlabs M 254H45) and one longpass (l) (Thorlabs M
254C45) beamsplitter with transmission (T ) and reflec-
tion (R) probabilities plotted in Fig. 4C. We choose to
place the longpass beamsplitter in the reflected arm of the
shortpass beamsplitter, instead of the other way around,
to minimize the overall wrong-way fraction as written in
Eq. (8). With this arrangement, ρblue(λ) = ρT,s(λ) ∼ 10−3

for red wavelengths and ρred(λ) = ρR,s(λ)ρT,l(λ) ∼ 10−3

for blue wavelengths. The transmission/reflection spec-
tra of both dichroic mirrors and of the blue/red arms are
plotted in Fig. 4C.

Modeling the number distribution of photons

In this section, we describe our model of Nin(λ), which
covers the wavelength range 350 nm-1150 nm. We start
with the stellar spectra, which can be modeled as black-
bodies with characteristic temperatures taken from the
Hipparcos catalogue [2, 3]. We then apply corrections
for the atmospheric transmission ρatm(λ), two layers of
anti-reflection coatings in each arm ρlens(λ), a silvered
mirror ρmirror, and finally the detector’s quantum effi-
ciency ρdet(λ) as the photon makes its way through the
setting reader.

Stellar Spectra

As discussed in the main text, the stars were selected
on the basis of their brightness, with temperatures rang-
ing from 3150 K-7600 K. To a very good approximation,
the photons emitted by the stars follow a blackbody dis-
tribution, which we assume is largely unaltered by the
interstellar medium as the light travels towards earth:

Nstar(λ) =
2c
λ4

1[
exp(hc/(kbT )) − 1

] . (9)

Run Side HIP ID f1→2 f2→1 Efficiency
1 A 56127 0.0142 0.0192 25.0%
1 B 105259A 0.0180 0.0146 24.9%
2 A 80620 0.0139 0.0203 24.3%
2 B 2876 0.0139 0.0160 22.7%

TABLE III. For each star, we compute the fraction of wrong-
way photons f and the atmospheric efficiency: the fraction of
stellar photons directed towards our telescopes which end up
generating measurement settings (as opposed to those which
do not due to telluric absorption or detector inefficiencies). We
adopt the notation f1→2 and f2→1 to allow easier indexing of
the labels for the “red” and “blue” settings ports as applied to
each run. Spectral model assumptions for other optical ele-
ments shift the f values upwards by no more than .10%, as-
suming that any uncertainties due to the atmospheric model or
real-time atmospheric variability are negligible during each ∼
3 minute experimental run. We therefore assume conservative
values σ f / f = 0.1 in the following sections.

This blackbody distribution is used as a starting point
for Nin(λ), to which modifications will be made. The
blackbody distributions for the Run 1 stars are shown in
Fig. 4A.

Atmospheric Absorbance

We generate an atmospheric transmittance spectrum
with the MODTRAN model for mid-latitude atmo-
spheres looking towards zenith [5]. To correct for the
observation airmass (up to X = 2.5), we use optical den-
sities from [6] to compute the atmospheric transmission
efficiency, which is due mostly to broadband Rayleigh
scattering. A more sophisticated model could also com-
pute modified absorption lines at higher airmasses, but
the effect on the wrong-way fractions fr→b, fb→r is neg-
ligible compared to the spectral change resulting from
Rayleigh scattering.

Lenses and Detectors

In the experimental setup, one achromatic lens in each
arm collimates the incident beam of stellar photons. The
collimated beam reflects off a silver mirror and is fo-
cused by a second lens onto the active area of the SPADs.
These elements are appropriately coated in the range
from 500 nm-1500 nm for minimum losses. However,
not all photons are transmitted through the two lenses and
the mirror. Each component has a wavelength-dependent
probability of transmission that is close to unity for most
of the nominal range, as plotted in Fig. 5. Once the fo-
cused light is incident on the SPAD, it will actually de-
tect the photon with some wavelength-dependent quan-
tum efficiency. The cumulative effect of these compo-
nents on the incident spectrum is shown in Fig. 4B.
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FIG. 4. (A) Blackbody spectra of the stars used in Run 1,
extincted by atmospheric Rayleigh scattering and telluric ab-
sorption, plotted in number flux per wavelength. (B) Our max-
imally conservative model of the anti-reflection coatings in the
two lenses, the silver mirror, and detector quantum efficiency
curves as a function of photon wavelength λ. (C) Which-way
probabilities as a function of λ due to the dichroic beamsplit-
ters. Note that the addition of the longpass beamsplitter makes
ρred(λ) exceptionally flat, i.e. very good at rejecting blue pho-
tons. (D) Color distribution of photons seen at each arm are
plotted, i.e. Ninρred and Ninρblue. The curves are normalized so
that the total area under the sum of both curves is 1. The color
scheme’s cutoff wavelength λ

′

is depicted by the shading color,
and for this star is about λ

′

∼703.2 nm. Note that some of the
photons arriving at each arm are classified as the wrong color
(overlap of red and blue arm spectra), no matter which λ

′

is
chosen.

Data Analysis

In this section we analyze the data from the two ex-
perimental runs. We make the assumptions of fair sam-
pling and fair coincidences [7]. Thus, for testing lo-
cal realism, all data can be postselected to coincidence
events between Alice’s and Bob’s measurement stations.
These coincidences were identified using a time window
of 2.5 ns.

We denote by NAB
i j the number of coincidences in

which Alice had outcome A ∈ {+,−} under setting ai

(i = 1, 2) and Bob had outcome B ∈ {+,−} under setting

FIG. 5. Wavelength-dependent probabilities of transmission
through each element in the photon’s path from the star to de-
tection.

b j ( j=1, 2). The measured coincidences for run 1 were

i j \ AB ++ +− −+ −−

11 2 495 6 406 7 840 2 234
12 6 545 24 073 30 223 4 615
21 1 184 4 537 5 113 959
22 18 451 3 512 3 949 14 196

(10)

The coincidence numbers for run 2 were

i j \ AB ++ +− −+ −−

11 3 703 10 980 14 087 2 756
12 3 253 12 213 15 210 2 899
21 1 084 4 105 5 442 932
22 5 359 1 012 1 249 4 495

(11)

We can define the number of all coincidences for set-
ting combination aib j,

Ni j ≡
∑

A,B=+,−
NAB

i j , (12)

and the total number of all recorded coincidences,

N ≡
∑

i, j=1,2
Ni j. (13)

A point estimate gives the joint setting choice probabili-
ties

qi j ≡ p(aib j) =
Ni j

N
. (14)

We first test whether the probabilities qi j can be factor-
ized, i.e., that they can be (approximately) written as

pi j ≡ p(ai) p(b j). (15)

Otherwise, there could be a common cause and the
setting choices would not be independent. We define
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p(ai) ≡ (Ni1 + Ni2)/N and p(b j) ≡ (N1 j + N2 j)/N. This
leads to the following values for the individual setting
probabilities for experimental run 1:

p(a1) = 0.6193, p(a2) = 0.3807,
p(b1) = 0.2257, p(b2) = 0.7743.

(16)

Pearson’s χ2-test for independence, qi j = pi j, yields
χ2 = N

∑
i, j=1,2 (qi j − pi j)2/pi j = 1.132. This implies

that, under the assumption of independent setting choices
(16), there is a purely statistical chance of 0.287 that the
observed data qi j (or data even more deviating) are ob-
tained. This probability is much larger than any typi-
cally used threshold for statistical significance. Hence,
this test does not allow a refutation of the assumption
of independent setting choices. For run 2, we estimate
p(a1) = 0.7333, p(a2) = 0.2667, p(b1) = 0.4854, and
p(b2) = 0.5146, with χ2 = 1.158 and statistical chance
0.282.

We next estimate the conditional probabilities for cor-
related outcomes in which both parties observe the same
result:

p(A= B|aib j) =
N++

i j + N−−i j

Ni j
. (17)

The Clauser-Horne-Shimony-Holt (CHSH) inequality
[8] can be written as

C ≡ − p(A= B|a1b1) − p(A= B|a1b2)
− p(A= B|a2b1) + p(A= B|a2b2) ≤ 0. (18)

While the local-realist bound is 0, the quantum bound is√
2−1 = 0.414, and the logical (algebraic) bound is 1.
With our data, the CHSH values are C = 0.2125 for

run 1, and C = 0.2509 for run 2, in each case violat-
ing the local-realist bound of zero. See Fig. 6. The
widely known CHSH expression in terms of correla-
tion functions, S ≡ |E11 + E12 + E21 − E22| ≤ 2 with
Ei j = 2 p(A = B|aib j) − 1, yields S = 2 |−C − 1| = 2.425
for run 1 and S = 2.502 for run 2, violating the corre-
sponding local-realist bound of 2.

Predictability of Settings

We need to take into account two sources of imperfec-
tions in the experiment that can lead to an excess pre-
dictability [9] of the setting choices. The excess pre-
dictability ε quantifies the fraction of runs in which —
given all possible knowledge about the setting generation
process that can be available at the emission event of the
particle pairs and thus at the distant measurement events
— one could predict a specific setting better than what
would simply be inferred from the overall bias of the set-
ting choices. Loosely speaking, ε quantifies the fraction
of runs in which the locality and freedom-of-choice as-
sumptions fail.

pHA=BÈa1b1L pHA=BÈa1b2L pHA=BÈa2b1L pHA=BÈa2b2L0

0.2

0.4
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FIG. 6. Plot of the conditional probabilities in Eq. (18), the
CHSH inequality, calculated for run 1. The three negative
contributions (red) are outweighed by the positive contribution
(green), violating the local-realist bound. The red contributions
are of unequal size due to limited state visibility and imperfect
alignment of the polarization settings.

Run Side ra1 , rb1 ra2 , rb2 na1 , nb1 na2 , nb2 ∆tnk [s]
1 A 105571 ± 25 38743 ± 15 1802 ± 6 1313 ± 5 59

B 26849 ± 13 93045 ± 23 756 ± 4 1008 ± 5 59
2 A 104999 ± 25 38176 ± 15 1658 ± 8 1823 ± 8 29

B 59513 ± 19 67880 ± 20 1731 ± 8 1414 ± 7 30

TABLE IV. For runs 1 and 2, rki and nki are the total and noise
rates in Hz for observer k = {a, b} and setting port i = {1, 2}. We
use Poisson process standard deviations σrki

≈
√

rki/∆trk , and
σnki
≈

√
nki/∆tnk , to estimate total and noise rate uncertainties

(rounded up to the nearest integer). ∆trk = 179 s is the duration
of both runs 1 and 2 used to measure the total rate rki for both
observers. ∆tnk are the durations of control measurements to
obtain the noise rates nki for Alice and Bob in each run. Differ-
ent surface temperatures and apparent magnitudes of the stars
result in different emitted spectra and thus in different count
rates for run 1 and 2.

The first source of imperfection is that not all of Al-
ice’s and Bob’s settings were generated by photons from
the two distant stars but were due to other, much closer
“noise” sources. The total rates of photons in the respec-
tive setting generation ports for runs 1 and 2 are listed in
Table IV. Note that if one calculated p(ai) as rai/(ra1+ra2 )
and analogously for b j, the numbers would be slightly
different than the numbers in Eq. (16) inferred from the
coincidences. The reason is that the average duration for
which a setting was valid depended slightly on the setting
itself. The overall setting validity times for the whole
runtime of the experiment match the numbers in Eq. (16)
very well.

A control measurement, pointing the receiving tele-
scopes marginally away from the stars, yielded the noise
rates listed in Table IV. In the most conservative case,
one would assume that all noise photons were under the
control of a local hidden-variable model. Thus, their con-
tribution to the predictability of setting a1 (a2) would be
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given by the ratio of noise rate to total rate, na1/ra1 =

0.017 (na2/ra2 = 0.034) for run 1. Similarly, the noise
contribution to the predictability for b1 (b2) is given by
nb1/rb1 =0.028 (nb2/rb2 =0.011) for run 1.

The second source of imperfection is that a certain
fraction of stellar photons leaves the dichroic mirror in
the wrong output port. We index the wrong-way frac-
tions fi′→i as defined in Table III with i′ → i denoting
either 1→ 2 or 2→ 1.

With (A) and (B) denoting Alice and Bob, we can write

rai =
(
1 − f (A)

i→i′

)
s(A)

i + f (A)
i′→i s(A)

i′ + nai ,

rb j =
(
1 − f (B)

j→ j′

)
s(B)

j + f (B)
j′→ j s(B)

j′ + nb j .
(19)

Here s(A)
i (s(B)

j ) is the detected rate of stellar photons
at Alice (Bob) which have a color that, when correctly
identified, leads to the setting choice ai (b j). Each rate
in Eq. (19) is a sum of three terms: correctly identified
stellar photons, incorrectly identified stellar photons that
should have led to the other setting, and the noise rate.
The four expressions in Eq. (19) allow us to find the four
rates s(A)

i and s(B)
j as functions of the f parameters.

We now want to quantify the setting predictability due
to the dichroic mirror errors. We imagine a hidden-
variable model with arbitrary local power with the fol-
lowing restrictions: It cannot use non-detections to its
advantage, and it can only alter at most certain fractions
of the incoming stellar photons, which are quantified by
the dichroic mirror error probabilities. We first focus
only on Alice’s side. We assume that in a certain fraction
of runs the local-realist model ‘attacks’ by enforcing a
specific setting value and choosing hidden variables that
optimize the measurement results to maximize the Bell
violation. This could for instance happen with a hid-
den (slower than light) signal from the source to Alice’s
dichroic mirror. Let us assume that qai is the fraction of
runs in which the model decides to generate setting ai.
If the incoming stellar photon would, under correct iden-
tification, have led to setting ai′ , this ‘overruling’ gets
reflected in the dichroic mirror error probability f (A)

i′→i. In
fact, we can equate qai = f (A)

i′→i, as the commitment to
enforce setting ai to occur, independent of knowledge of
the incoming photon’s wavelength. Thus, the probability
to enforce ai, qai , is identical to the conditional probabil-
ity f (A)

i′→i that ai is enforced although ai′ would have been
generated otherwise. The predictability from this ‘over-
ruling’ is quantified by f (A)

i′→i s(A)
i′ /rai , i.e. the fraction of

ai settings which stem from stellar photons that should
have led to setting ai′ .

On the other hand, if the incoming stellar photon
would have led to setting ai anyway, there is no visi-
ble ‘overruling’ and the attack remains hidden, while the
model still produces outcomes that maximize the Bell
violation. The predictability from this is quantified by

f (A)
i′→i s(A)

i /rai , i.e. the fraction of ai settings for which no
attack was actually necessary to maximize Bell violation.

Everything is analogous for Bob. In total, we can
add up the different contributions—noise photons and
dichroic mirror wrong-way fractions—and obtain the ex-
cess predictabilities

εai = 1
rai

(
nai + f (A)

i′→i s(A)
)
,

εb j = 1
rb j

(
nb j + f (B)

j′→ j s(B)
)
,

(20)

with the total detected stellar photon rates s(A) ≡ s(A)
1 +s(A)

2
and s(B) ≡ s(B)

1 + s(B)
2 . Note that s(A) =

∑
i(rai − nai ) and

s(B) =
∑

j(rb j − nb j ), such that the total star counts from
both ports for Alice or Bob are themselves independent
of any f parameters, since all detected stellar photons
must either go to the correct or incorrect port.

One final source that can contribute to the excess pre-
dictability concerns the physical response of the setting
readers: after one of the detectors clicks with a certain
setting (for example, upon detecting a red stellar pho-
ton), that detector becomes “blind” for a dead time of
approximately 500 ns, after which its quantum efficiency
recovers to the original value. During this dead / recov-
ery time, the ‘blue’ detector is more likely to click. Such
situations would yield an excess predictability, over and
above the likelihood that a hidden-variable mechanism
might discern from the biased settings frequencies (un-
equal qi j) or the other sources of noise and errors in the
settings readers (nonzero εai , εb j ).

To address this additional predictability from the
dead/recovery time of the setting readers, we introduced
an additional, artificial “dead time” for the ‘blue’ detec-
tor, after the corresponding ‘red’ detector had clicked
(and vice versa). We optimized the window τcut for each
detector by analyzing data from our calibration measure-
ments with the various astronomical sources, conducted
before each experimental run. Then we post-selected
(and deleted) all measurement coincidences from our
Bell-test data that had a ‘blue’ click within τcut of a ‘red’
click (and vice versa), consistent with the assumption of
“fair sampling” and “fair coincidences.” By finding opti-
mal values of τcut for each detector and each experimen-
tal run, we may reduce this additional, “dead-time” pre-
dictability to an arbitrarily small amount. The effect is to
remove any additional correlations between neighboring
setting-detector ‘clicks,’ beyond what would be inferred
from the measured bias and ε predictability.

In the worst case, the predictable setting events do not
happen simultaneously on both sides but fully add up.
Hence, the fraction of predictable coincidences within
the ensemble of setting combination aib j is at most

εi j ≡ εai + εb j . (21)
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Run ε11 ± σε11 ε12 ± σε12 ε21 ± σε21 ε22 ± σε22

1 0.13521 0.07645 0.17791 0.11915
±6.92 × 10−3 ±3.44 × 10−3 ±8.24 × 10−3 ±5.65 × 10−3

2 0.10533 0.08917 0.16094 0.14477
±4.30 × 10−3 ±3.72 × 10−3 ±6.08 × 10−3 ±5.68 × 10−3

TABLE V. For runs 1 and 2, we compute εi j with Eq. (21) and
σεi j with Eqs. (24)-(25). We use values and errors on the total
and noise rates from Table IV along with 10% fractional uncer-
tainties on the dichroic mirror wrong-way fractions in Table III.
For both runs, Eqs. (22) and (26) yield ε ± σε = ε21 ± σε21 .

If this number is larger than 1, εi j is set to 1.
We conservatively assume that all predictable events

are maximally exploited by a local hidden-variable
model. Then, in fact, the largest of the four fractions,
i.e.,

ε ≡ maxi j εi j ≡ maxi εai + max j εb j , (22)

can be reached for the CHSH expression C.
To make this clear, let us consider the simple hidden-

variable model in which the outcome values are always
A1 = −1, A2 = +1, B1 = +1, B2 = +1, with subscripts
indicating the respective setting. The first two probabili-
ties in Eq. (18) are each 0 (only anticorrelations), the last
two are each 1 (only correlations), and C = 0. Now,
if in a fraction ε21 of all coincidence events with set-
ting combination a2b1 there is setting information of one
party available at the source or the distant measurement
event, then that latter measurement outcome can be ‘re-
programmed’ to produce an anticorrelation. Hence, we
have p(A = B|a2b1) = 0 in that ε21 subensemble, and
p(A = B|a2b1) = 1 − ε21 in total. This leads to C = ε21.
Similar examples can be constructed for the other frac-
tions. The predictabilities εi j thus require us to adapt the
CHSH inequality of Eq. (18) to (see Ref. [9])

C ≤ ε. (23)

The dichroic mirror errors were characterized, taking
into account the spectra of the stars and all optical ele-
ments. Using the values for f (A,B)

i→i′ in Table III and the
total and noise rates from Table IV yields a predictabil-
ity of ε = 0.1779 for run 1, such that our observed value
C = 0.2125 still represents a violation of the adapted
inequality of Eq. (23). Likewise for run 2, we find
ε = 0.1609, again yielding C = 0.2509 > ε. See Ta-
ble V.

Uncertainty on the Settings Predictability

We temporarily drop the labels for Alice and Bob. As-
suming that the rates ri, ni, and the f parameters are in-
dependent (which follows from our assumption of fair
sampling for all detected photons), error propagation of

Eq. (20) yields an uncertainty estimate for εi given by

σ2
εi

= r−4
i

{
r2

i

[
s2σ2

fi′→i
+

(
1 − fi′→i

)2
σ2

ni
+ f 2

i′→i

(
σ2

ri′
+ σ2

ni′

)]
+

[
ni(1 − fi′→i) + fi′→i

(
ri′ − ni′

)]2
σ2

ri

}
, (24)

where we note that s = r1 + r2 − n1 − n2. Eq. (24) holds
for Alice or Bob by applying appropriate labels. If we
assume Alice and Bob’s predictability contributions from
Eq. (21) are independent, we find

σεi j =
√
σ2
εai

+ σ2
εb j
, (25)

with an estimated uncertainty on ε from Eq. (22) of

σε =
√
σ2

maxi εai
+ σ2

max j εb j
, (26)

where σmaxi εai
is the uncertainty from Eq. (24) on the

term which maximizes εai , and likewise for Bob. For
both runs 1 and 2, assuming values and errors on the to-
tal and noise rates from Table IV, wrong-way fractions
f from Table III with conservative fractional errors of
σ f / f = 0.1, Table V shows values of εi j from Eqs. (20)-
(21), σεi j from Eqs. (24)-(25), and σε from Eq. (26).

Statistical significance

There exist several different ways to estimate the sta-
tistical significance for experimental runs 1 and 2. The
result of any such statistical analysis is a p-value, i.e., a
bound for the probability that the null hypothesis — local
realism with ε predictability, biased detector-setting fre-
quencies, fair sampling, fair coincidences, and any other
additional assumptions — could have produced the ex-
perimentally observed data by a random variation.

Until recently, it was typical in the literature on such
Bell tests to estimate a p-value under several assumptions
(e.g., [10]): that each trial was independent and iden-
tically distributed (i.i.d.), and that the hidden-variable
mechanism could not make any use of “memory” of the
settings and outcomes of previous trials. Under those
assumptions, one typically applied Poisson statistics for
single coincidence counts, and assumed that the under-
lying statistical distribution was Gaussian. Moreover, it
was typical to neglect the excess predictability, ε. Ap-
plied to our experimental data, such methods yield what
we consider to be overly optimistic estimates, suggesting
violation of the CHSH inequality by ν ≥ 39.8 and 42.7
standard deviations for runs 1 and 2, respectively.

However, such an approach assumes that the measured
coincidence counts NAB

i j are equal to their expected val-
ues, but then contradicts this assumption by calculating
the probability that the NAB

i j could have values differing
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by several standard deviations from their expected val-
ues. Plus, as recent work has emphasized (e.g., [9]), ex-
cess predictability ε must be taken into account when es-
timating statistical significance for any violations of the
CHSH inequality.

More recently, several authors have produced im-
proved methods for calculating p-values for Bell tests.
These newer approaches do not assume i.i.d. trials,
and also, more conservatively, allow the hidden-variable
model to exploit “memory” of previous settings and out-
comes. Whereas the “memory loophole” cannot achieve
Bell violation, incorporating possible memory effects
does require modified calculations of statistical signifi-
cance [9, 11–14].

Although these new works represent a clear advance
in the literature, unfortunately they are not optimized for
use with our particular experiment. For example, the
unequal settings probabilities (bias) for our experiment
limit the utility of the bounds derived in [13, 14], as the
resulting p-values are close to 1. Likewise, one may fol-
low the approach of [9, 11, 12] and use the Hoeffding in-
equality [15]. However, it is known in general that such
bounds routinely overestimate p — and hence underes-
timate the genuine statistical significance of a given ex-
periment — by a substantial amount (see, e.g., [14]).

Therefore, in this section we present an ab initio cal-
culation of the p-value tailored more specifically to our
experiment. This method yields what we consider to be
reasonable upper bounds on the p-values, which are still
highly significant even with what we regard as a con-
servative set of assumptions. Our calculation incorpo-
rates predictability of settings and allows the local-realist
hidden-variable theory to exploit memory of previous de-
tector settings and measurement outcomes. We present
essential steps in the calculation here, and defer fuller
discussion to future work.

We consider a quantity W, which is a weighted mea-
sure of the number of “wins,” that is, the number of
measurement outcomes that contribute positively to the
CHSH quantity C, defined in Eq. (18). A win consists
of A = B for settings pair a2b2, and A , B for any
other combination of settings. Thus we define Nwin

i j ≡

[NA,B
11 ,NA,B

12 ,NA,B
21 ,NA=B

22 ], and

W =
∑

i j

Nwin
i j

qi j(1 − εi j)
, (27)

where qi j ≡ Ni j/N is the fraction of trials in which set-
tings combination i j occurs, and εi j, defined in Eq. (21),
is the probability that a given trial will be “corrupt.” A
trial is considered “corrupt” if it (1) involved a noise
(rather than stellar) photon, or (2) involved a dichroic
mirror error, or (3) was previewed by the hidden-variable
theory for the purpose of considering a dichroic mirror

error, but was passed over because the stellar photon al-
ready had the desired color. The occurrence of a corrup-
tion in any trial is taken to be an independent random
event, which has probability εi j that depends on the set-
tings pair aib j. We assume that for “uncorrupt” trials, the
hidden-variable theory has no information about what the
settings pair will be beyond the probabilities qi j.

We assume that the hidden-variable theory can exploit
each corrupted trial and turn it into a win. We further as-
sume that the occurrence of these corrupt events cannot
be influenced by either the experimenter or the hidden-
variable theory; they occur with uniform probability εi j

in each trial. We consider the probabilities εi j to be
known (to within some uncertainty σεi j ), but the actual
number of corrupt trials to be subject to statistical fluctu-
ations.

The p-value is the probability that a local-realist
hidden-variable theory, using its best possible strategy,
could obtain a value of W as large as the observed value.
To define this precisely, we must be clear about the en-
semble that we are using to define probabilities. It is
common to attempt to describe the ensemble of all exper-
iments with the same physical setup and the same num-
ber of trials. Yet it is difficult to do this in a precise way,
because one has to use the statistics of settings choices
observed in the experiment to determine the probabili-
ties for the various settings. From a Bayesian point of
view, this requires the assumption of a prior probability
distribution on settings probabilities, and the answers one
finds for p would depend on what priors one assumes.

We avoid such issues by considering the actual num-
ber Ni j of the occurrences of each settings choice aib j as
given. The relevant ensemble is then the ensemble of all
possible orders in which the settings choices could have
occurred. The p-value will then be the fraction of order-
ings for which the hidden-variable theory, using its best
strategy, could obtain a value of W greater than or equal
to the value obtained in the experiment.

We may motivate the form of W in Eq. (27) as follows.
In the absence of noise or errors, the hidden-variable
model could specify which outcomes (A, B) will arise for
each of the possible settings (i, j). The best plans will
win for three of the four possible settings pairs, but will
lose for one of the possible settings pairs. Hence a plan
may be fully specified by identifying which settings pair
will be the loser. (There will actually be two detailed
plans for such a specification, related by a reversal of all
outcomes, but we may treat such plans as equivalent.)

In the presence of noise and errors, for each time the
settings pair is aib j, there is a probability εi j that the trial
is corrupt. If the trial is corrupt, it automatically registers
as a win. If it is not corrupt, then it has a probability
Pwin

i j of registering as a win, where we take Pwin
i j to be

p(A = B|aib j) for (i j) = (22), and p(A , B|aib j) for the
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other three cases. Then we may write

〈Nwin
i j 〉 =

[
εi j +

(
1 − εi j

)
Pwin

i j

]
Ni j, (28)

which may be solved for Pwin
i j :

Pwin
i j =

〈Nwin
i j 〉

Ni j(1 − εi j)
−

εi j

1 − εi j
. (29)

The CHSH inequality may be written
∑

i j Pwin
i j ≤ 3, so

Eq. (29) implies that

∑
i j

〈Nwin
i j 〉

qi j(1 − εi j)
≤ (3 + ε̄)N, (30)

where we have defined

ε̄ =
∑

i j

εi j

1 − εi j
. (31)

The lefthand side of Eq. (30) motivates our ansatz for W
in Eq. (27).

The function W, which is a random variable, may be
expressed in terms of a set of more elementary random
variables. We label the trials by α, so for each trial α
there will be a set of random variables:

Fα
i j =

{ 1 if the settings pair is aib j in trial α
0 otherwise

Gα =

{ 1 if the trial α is corrupt
0 otherwise

Uα =

{ 1 if the trial α is uncorrupt
0 otherwise

(32)

with Gα + Uα = 1. We also define the functions

ωαi j =

{ 1 if the settings pair aib j in trial α is a win
0 otherwise

ω̄αi j =

{ 1 if the settings pair aib j in trial α is a loss
0 otherwise

(33)

with ωαi j + ω̄αi j = 1. Unlike the variables in Eq. (32), ωαi j
and ω̄αi j are not random; they are under the control of the
hidden-variable mechanism. The square of each of the
quantities in Eqs. (32) and (33) is equal to itself, since
their only possible values are 0 and 1.

Our goal is to evaluate σ2
W = 〈W2〉 − 〈W〉2. We begin

by calculating 〈W〉 =
∑
α〈Wα〉. In terms of the quantities

in Eqs. (32) and (33), we may write

Wα =
∑

i j

Fα
i j

(
Uαωαi j + Gα

)
qi j(1 − εi j)

. (34)

Since the settings are chosen randomly on each trial,
we assume that all orderings of the setting choices are

equally likely, and are independent of the occurrence of
corruptions. This implies that 〈Fα

i jU
α〉 = qi j(1 − εi j) and

〈Fα
i jG

α〉 = qi jεi j, independent of α. Then we find

〈Wα〉 =
∑

i j

qi j

[
(1 − εi j)ωαi j + εi j

]
qi j(1 − εi j)

=
∑

i j

ωαi j +
∑

i j

εi j

1 − εi j
= 3 + ε̄,

(35)

and hence

〈W〉 = N(3 + ε̄). (36)

To evaluate 〈W2〉 we write

〈W2〉 =
∑
α

∑
β

〈WαWβ〉 =
∑
α

〈W2
α〉 +

∑
α

∑
β,α

〈WαWβ〉.

(37)
For the first term, we have

〈W2
α〉 =

∑
i j

∑
k`

〈Fα
i jF

α
k`(Uαω

α
i j + Gα)(Uαωαk` + Gα)〉

qi jqk`(1 − εi j)(1 − εk`)

=
∑

i j

ωαi j

qi j(1 − εi j)
+

∑
i j

εi j

qi j(1 − εi j)2 ,

(38)

where the second line follows upon noting that Fα
i jF

α
k` =

0 if (i j) , (k`), and using (Fα
i j)

2 = Fα
i j, (ωαi j)

2 = ωαi j. We
therefore find∑

α

〈W2
α〉 = N

∑
i j

1 − fi j

qi j(1 − εi j)
+

∑
i j

εi j

qi j(1 − εi j)2

 ,
(39)

where we have defined fi j as the fraction of trials for
which the hidden-variable theory chooses (i j) to be the
losing settings pair.

For the second term on the righthand side of Eq. (37),
we have∑
α

∑
β,α

〈WαWβ〉

=
∑
α

∑
β,α

∑
i j

∑
k`

〈Fα
i jF

β
k`(U

αωαi j + Gα)(Uβω
β
k` + Gβ)〉

qi jqk`(1 − εi j)(1 − εk`)

=
∑

i j

∑
k`

∑
α

∑
β,α

qi j(Nqk` − δi j,k`)
N − 1

×

[
(1 − εi j)ωαi j + εi j

] [
(1 − εk`)ω

β
k` + εk`

]
qi jqk`(1 − εi j)(1 − εk`)

= T1 + T2,

(40)

where δi j,k` = 1 if (i j) = (k`) and 0 otherwise. (We
have used the fact that for each of the Ni j values of α for



12

which Fα
i j = 1, there are Ni j−1 values of β , α for which

Fβ
i j = 1.)
To further simplify Eq. (40), we first assume that the

hidden-variable theory cannot exploit memory of previ-
ous settings or outcomes. In that case, we may neglect
correlations between Fα

i j and ωβk`, and perform a full en-
semble average. (We will relax this assumption below.)
Proceeding as above, the term T1 may then be rewritten

T1 =
N

N − 1

∑
i j

∑
k`

∑
α

∑
β,α

1
(1 − εi j)(1 − εk`)

×
[
(1 − εi j)ωαi j + εi j

] [
(1 − εk`)ω

β
k` + εk`

]
= N2(3 + ε̄)2,

(41)

where we have made use of the fact that
∑

i j 1/(1− εi j) =∑
i j(1 − εi j)/(1 − εi j) +

∑
i j εi j/(1 − εi j) = 4 + ε̄. For the

term T2, we note that∑
α

∑
β,α

ωαi jω
β
i j = N(1 − fi j)

[
N(1 − fi j) − 1

]
. (42)

Then T2 may be rewritten

T2 = −
1

N − 1

∑
i j

∑
α

∑
β,α

1
qi j(1 − εi j)2

×
[
(1 − εi j)ωαi j + εi j

] [
(1 − εi j)ω

β
i j + εi j

]
= −

N
N − 1

∑
i j

{ (1 − fi j)
[
N(1 − fi j) − 1

]
qi j

}

− N
∑

i j

{2εi j(1 − fi j)
qi j(1 − εi j)

+
ε2

i j

qi j(1 − εi j)2

}
.

(43)

Following some straightforward algebra, Eqs. (39), (41),
and (43) yield

σ2
W =

N2

N − 1

∑
i j

fi j(1 − fi j)
qi j

+ N
∑

i j

fi jεi j

qi j(1 − εi j)
. (44)

The fi j are under the control of the hidden-variable
theory, so we make the conservative assumption that the
hidden-variable theory may choose the fi j so as to max-
imize σW . To impose the constraint that

∑
i j fi j = 1, we

introduce a Lagrange multiplier λ:

L =
N2

N − 1

∑
i j

fi j(1 − fi j)
qi j

+ N
∑

i j

fi jεi j

qi j(1 − εi j)

+ λ

∑
i j

fi j − 1

 .
(45)

Setting ∂L/∂ fi j = 0, we find the optimum values
f opt
i j (λ). By inserting these into the normalization con-

dition
∑

i j f opt
i j = 1, we may solve for λ, which in turn

yields

f opt
i j =

1
2
− qi j +

N − 1
2N

[
εi j

1 − εi j
− ε̄qi j

]
. (46)

Inserting f opt
i j into Eq. (44) for σ2

W , we find

(
σ

opt
W

)2
=

N2

4(N − 1)


∑

i j

1
qi j

 − 4

 − N ε̄

+
N
4

∑
i j

εi j

qi j(1 − εi j)

−
1
4

(N − 1)ε̄2 +
1
4

∑
i j

(N − εi j)εi j

qi j(1 − εi j)2 .

(47)

For run 1, Eq. (46) yields an unphysical f12 < 0 for our
data. Upon employing a second Lagrange multiplier to
ensure both that

∑
i j fi j = 1 and f12 ≥ 0, we find

f opt
i j =

1
2

+

(
N − 1

2N

)[
εi j

1 − εi j
−

qi j

1 − q12

(
N

N − 1
+ε̄−

ε12

1 − ε12

)]
,

(48)
such that f opt

11 = 0.376, f opt
12 = 0, f opt

21 = 0.483, and
f opt
22 = 0.141. For run 1, one must substitute Eq. (48)

into Eq. (44) in order to find σopt
W . For run 2, on the other

hand, Eq. (46) yields fi j > 0 ∀ (i j), with f opt
11 = 0.101,

f opt
12 = 0.062, f opt

21 = 0.428, and f opt
22 = 0.409, allowing

σ
opt
W to be computed with Eq. (47).
Using the values for total and noise rates (r, n) in Ta-

ble IV, dichroic mirror wrong-way fractions ( f ) in Ta-
ble III, values of qi j inferred from Eqs. (13) and (14) and
the probabilities for corrupt trials εi j in Table V, values
for W, 〈W〉, and σopt

W for both runs are listed in Table VI.

Run W 〈W〉 σ
opt
W

1 5.0249 × 105 4.8954 × 105 954.3
2 3.3030 × 105 3.1754 × 105 682.6

TABLE VI. For runs 1 and 2, values for W and 〈W〉 from
Eqs. (27) and (36) are shown, as well as values of σopt

W from
Eqs. (44) and (48) for run 1 and Eq. (47) for run 2.

Next we take into account the uncertainty in the pre-
dictabilities εai and εb j . The quantity of interest is

ν̄ =
W − 〈W〉

σ
opt
W

. (49)

The quantities W, 〈W〉, and σ
opt
W all depend on εai and

εb j , along with the NAB
i j values, which are taken as given.

Therefore, we only need to propagate uncertainties on εai

and εb j to compute the uncertainty on ν̄, which we denote
∆ν.

We assume no covariance between εai and εb j . This
again follows from our assumptions of independence for
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Alice and Bob as well as fair sampling for all detected
photons, which implies ri, ni, and fi′→i (the inputs to εai

and εb j ) are independent. An estimate for ∆ν is then given
by:

∆2
ν =

∑
ai

(
∂ν̄

∂εai

)2

σ2
εai

+
∑

b j

(
∂ν̄

∂εb j

)2

σ2
εb j

=
∑

ai

(
σεai

σW

)2
∑

j

Ei j

qi j(1 − εi j)2

2

+
∑

b j

(σεb j

σW

)2 ∑
i

Ei j

qi j(1 − εi j)2

2

,

(50)

where

Ei j ≡ Nwin
i j − Nqi j −

(
ν̄N

2σW

)
f opt
i j , (51)

and we recall from Eq. (21) that εi j = εai + εb j . We may
now compute how σεai

and σεb j
affect the statistical sig-

nificance of each run. The naive number of standard de-
viations ν̄ in Eq. (49) implicitly assumed σεai

, σεb j
= 0,

and therefore ∆ν = 0. If we allow for an uncertainty in ν
equal to n times the 1-σ uncertainty in ν, then we should
calculate the p-value using

νn ≡ ν̄ − n∆ν . (52)

If we choose n so that n = νn, then

νn =
ν̄

1 + ∆ν
. (53)

Assuming a Gaussian distribution for large-sample ex-
periments, we conclude that the conditional probabil-
ity that the hidden variable mechanism could achieve a
value of W as large as the observed value Wobs, assum-
ing that the true value of ν ≥ νn, is given by pcond =
1
2 erfc(νn/

√
2). Since we chose n = νn, if we assume

Gaussian statistics for the uncertainty in ν, then there is
an equal probability that the true value of ν is less than
νn, in which case our analysis does not apply, and we
must conservatively assume that W might exceed Wobs.
Thus, the p-value corresponding to the total probability
that W ≥ Wobs is bounded by p = 2pcond. Again assum-
ing Gaussian statistics, we can relate p to an equivalent
ν, by p = 1

2 erfc(ν/
√

2). Proceeding in this way, we find
the values for ν̄, ∆ν, ν, and p listed in Table VII.

Run ν̄ ∆ν ν p
1 13.57 0.79905 7.54 4.64 × 10−14

2 18.71 0.53999 12.15 5.93 × 10−34

TABLE VII. Values for ν̄, ∆ν, ν, and p for runs 1 and 2.

Memory of Previous Trials

Next we consider possible memory effects. We define
the quantity W̃ ≡ W − (3 + ε̄)N. Then 〈W̃〉 = 0, regard-
less of what plan the hidden-variable theory uses. On
the other hand, the hidden-variable theory can affect the
standard deviation of W̃. If we denote by W̃0 the value of
W̃ obtained in the experiment, then the p-value we seek
is the probability that the hidden-variable theory could
have achieved W̃ ≥ W̃0 by chance. To discuss an experi-
ment in progress, we define

W̃n ≡

n∑
α=1

(Wα − 3 − ε̄), (54)

which is the contribution to W̃ after n trials.
For sufficiently large N, we may assume that the prob-

abilities are well approximated by a Gaussian probability
distribution. Then we expect that as long as W̃n ≤ W̃0,
the best strategy for the hidden-variable theory is to max-
imize σW̃ , so that the number of standard deviations to
its goal is as small as possible. When and if W̃n passes
W̃0, on the other hand, then its best strategy is to mini-
mize σW̃ , so as to minimize the probability that W̃ might
backslide to W̃ ≤ W̃0.

We define Nlose,i j as the number of trials for which the
hidden-variable theory selects settings (i j) as the loser.
Then we seek to estimate pleft(n|Nlose,i j) ≡ p(W̃n < 0),
under the assumption that the hidden-variable loser se-
lection is given by Nlose,i j. That is, pleft(n|Nlose,i j) is the
probability that after n trials, the net change in W̃ has
been to the left (i.e., negative). For large n, we expect
the probability distribution for W̃ to become a Gaussian
with zero mean, so that pleft(n|Nlose,i j) should approach
1/2, for any hidden-variable theory loser selection. For
smaller n, however, pleft(n|Nlose,i j) can reach some maxi-
mum value B > 1/2.

Finally, we define p1 to be the probability that W̃n ≥

W̃0 for some n in the range 1 ≤ n ≤ N, under the assump-
tion that the hidden-variable theory consistently makes
choices that maximize σW̃ . Consider some particular se-
quence of trials that contributes to p1, that is, a sequence
for which W̃n ≥ W̃0 for some n. The continuation of this
sequence for the rest of the experiment (assuming that the
hidden-variable theory continues to make choices that
maximize σW̃ ) can do one of two things: it can finish the
experiment with W̃ ≥ W̃0, or it can finish the experiment
with W̃ < W̃0. In the first case, this sequence contributes
to the p value we calculated in the previous subsection,
whereas in the second case it does not. The second case
is an instance of backsliding, for which we know that the
probability is at most B. Hence the probability of the
first case is at least 1 − B, so the p value we seek, pmem,
satisfies

pmem ≤
p

1 − B
, (55)
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FIG. 7. The quantity pleft,max(n) is the maximum probability
that W̃ moves to the left in n trials. Shown here is pleft,max(n) for
experimental run 1 (top) and for run 2 (bottom).

where p is the value calculated in the previous subsec-
tion, which did not account for memory effects. There-
fore it remains to estimate B.

The quantity B = maxn{pleft,max(n)}, where
pleft,max(n) ≡ max{pleft(n|Nlose,i j)}, and the latter quantity
is maximized over all possible assignments of (non-
negative integers) Nlose,i j consistent with

∑
i j Nlose,i j = n.

Using the εi j and qi j for experimental runs 1 and 2, we
find the results shown in Fig. 7. For both experimental
runs, the largest probability for a leftward excursion of
W̃ occurred for n = 1. In particular, we find B = 0.7393
for run 1, and B = 0.8500 for run 2. Separate Monte
Carlo simulations (involving 100 million samples)
illustrate that pleft(n) → 1/2 for n ∼ 103, considerably
greater than the n = 15 shown in Fig. 7, but still much
smaller than N ∼ 105 in each experimental run.

Incorporating these memory effects, we find pmem ≤

1.78 × 10−13 for run 1, and pmem ≤ 3.96 × 10−33 for run
2. Again assuming a Gaussian distribution, these corre-
spond to ν ≥ 7.31 and 11.93 standard deviations, respec-
tively. We consider these numbers to be reasonable esti-
mates of the statistical significance of our experimental
results, deriving as they do from conservative assump-
tions applied to a calculation tailored specifically to our
experimental setup.

No-signaling

Lastly, we check whether our data are consistent with
the no-signaling principle. This principle demands that,
under space-like separation, local outcome probabilities
must not depend on the setting of the distant party:

p(A=+|aib j) = p(A=+|aib j′ ),
p(B=+|aib j) = p(B=+|ai′b j).

(56)

The analogous equations for the ‘−’ outcomes follow
trivially from p(A = −|aib j) = 1 − p(A = +|aib j). Let us
denote by N±ai

(N±b j
) the number Alice’s (Bob’s) outcomes

‘±’ where she (he) had setting ai (b j). The recorded
data for experimental run 1, post-selecting only onto a
valid setting choice (i.e., the click in the setting reader
occurred within the time-interval τused) and not onto a
coincident outcome at the distant location, were

b1 b2 a1 a2

N+
a1

163 292 550 046 N+
b1

562 351 352 896
N+

a2
101 289 340 045 N+

b2
2 033 046 1 279 635

N−a1
165 593 555 034 N−b1

480 738 302 277
N−a2

100 848 340 890 N−b2
1 553 010 976 740

(57)
The data in Eq. (57) were obtained after applying the τcut
filter. We denote by N±ai,b j

(N±b j,ai
) the value of N±ai

(N±b j
)

in the above table for distant setting b j (ai). A point es-
timate for p(A = +|aib j) is then given by N+

ai,b j
/(N+

ai,b j
+

N−ai,b j
), and a point estimate for p(B = +|aib j) is given by

N+
b j,ai

/(N+
b j,ai

+N−b j,ai
).

Under space-like separation of all relevant events,
no-signaling must be obeyed in both local realism and
quantum mechanics, since its violation would contra-
dict special relativity. (An experimental violation of no-
signaling would require the settings of the distant labo-
ratory to be available at the local measurement station
via faster-than-light communication or due to a common
cause in the past.) For run 1, point estimates yield the
following probabilities:

p(A=+|a1b1) = 0.4965, p(A=+|a1b2) = 0.4977,
p(A=+|a2b1) = 0.5011, p(A=+|a2b2) = 0.4994,
p(B=+|a1b1) = 0.5391, p(B=+|a2b1) = 0.5386,
p(B=+|a1b2) = 0.5669, p(B=+|a2b2) = 0.5671.

(58)

The null hypothesis of no-signaling demands that the two
conditional probabilities in each line should be equal. In
order to test for signaling, we perform a pooled two-
proportion z-test. The probabilities that the observed
data or worse are obtained under the null hypothesis are
0.211, 0.177, 0.532, 0.654, respectively. (For the stars
used in run 2, we obtain the probabilities 0.434, 0.342,
0.737, 0.582, respectively.) As all probabilities are large,
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our data are in agreement with the no-signaling assump-
tion. (We performed the same test on our data for runs 1
and 2 prior to applying the τcut filter, and likewise found
no statistical evidence to suggest signaling.)

We remark that when post-selecting on coincident out-
come events, i.e. using the counts in Eq. (10), the condi-
tion p(A = +|a2b1, B = ∗) = p(A = +|a2b2, B = ∗), where
‘B = ∗’ denotes that Bob had a definite outcome (whose
value is ignored), is violated significantly in both experi-
ments. This can be attributed to the fact that the two to-
tal detection efficiencies for outcomes ‘+’ and ‘−,’ espe-
cially on Bob’s side, were not the same. Let us denote the
total detection efficiencies of Alice (Bob) for outcome
± by η(A)

± (η(B)
± ), including all losses in the source, the

link, and the detectors themselves. A detailed quantum-
mechanical model for the data of run 1 suggests that the
ratios of these efficiencies were R(A) ≡ η(A)

− /η(A)
+ = 1.00

for Alice and R(B) ≡ η(B)
− /η(B)

+ = 0.81 for Bob. The dif-
ference in R(A) and R(B) can fully be understood on the
basis of the known efficiency differences of the detectors
used. One can correct the counts in Eq. (10) for these
efficiencies by multiplying all ‘+’ counts of Alice (Bob)
by
√

R(A) (
√

R(B)), and dividing all her (his) ‘−’ counts
by
√

R(A) (
√

R(B)). The corrected counts show no sign of
a violation of no-signaling. This is also true for the data
from run 2.

We finally note that, due to the low total detection
efficiencies, our experiment had to make the assump-
tions of fair sampling and fair coincidences. This implies
that low or imbalanced detection efficiencies are not ex-
ploited by hidden-variable models.
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